Welcome to Matrix Education
To ensure we are showing you the most relevant content, please select your location below.
Select a year to see courses
Learn online or on-campus during the term or school holidays
Learn online or on-campus during the term or school holidays
Learn online or on-campus during the term or school holidays
Learn online or on-campus during the term or school holidays
Learn online or on-campus during the term or school holidays
Learn online or on-campus during the term or school holidays
Learn online or on-campus during the term or school holidays
Get HSC exam ready in just a week
Select a year to see available courses
Science guides to help you get ahead
Science guides to help you get ahead
In this post, we give you the solutions to the 2019 Maths Advanced paper.
Guide Chapters
Join 75,893 students who already have a head start.
"*" indicates required fields
Related courses
The 2019 HSC Mathematics Advanced (2 Unit) exam paper solutions are here!
Have you seen the 2019 HSC Mathematics Advanced (2 Unit) exam paper yet?
In this post, we will work our way through the 2019 HSC Maths Advanced (2 Unit) paper and give you the solutions, written by our Head of Mathematics Oak Ukrit and his team.
Read on to see how to answer all of the 2019 questions.
Question Number | Answer | Solution |
1. | B | \(\) \begin{align*} \pi^{10} &= 93648.0478\\ &= 9.3648\times10^4\\ &= 9.4 \times 10^4 \textrm{ (2 s.f.)}\\ \end{align*} |
2. | D | \begin{align*} -3x &\leq 8\\ x &\geq -\frac{8}{3} \end{align*} |
3. | C | \begin{align*} \frac{a^2a^{-3}}{\sqrt{a}} &= \frac{a^2a^{-3}}{a^\frac{1}{2}}\\ &= a^{2-3-1/2}\\ &= a^{-3/2}\\ ∴ a^p &= a^{-3/2} \\ ∴ p &= -\frac{3}{2} \end{align*} |
4. | C | As the focus is to the right of the vertex, it must be a positive sideways parabola. As the vertex is at \((2,1)\), the equation must be of the form \((y-1)^2 = 4a(x-2)\). Thus the only possible solution is \(C\). |
5. | A | \begin{align*} \frac{\log_29}{\log_23} &= \frac{\log_23^2}{\log_23}\\ &= \frac{2\log_23}{\log_23}\\ &= 2 \end{align*} |
6. | C | \begin{align*} \textrm{P(winning)} &= 1 – \textrm{P(losing)} \\ &= 1 – \textrm{P(odd number)}\cdot\textrm{P(heads)} \\ &= 1 – \frac{1}{2}\cdot\frac{1}{2} \\ &= \frac{3}{4} \end{align*} |
7. | D | It can be seen that the range of the curve is \(3\) units, which means the curve is stretched \(1.5\) times vertically (\(a = 1.5\)). The curve also has a period of \(\pi\), which means that the curve has been squished 2 times horizontally (\(b = 2\)). |
8. | C | A maximum will occur at time \(t\), when the derivative at time \(t\) is \(0\), and the derivative is positive just before, and negative just after. As acceleration is the derivative of velocity, by the graph this is only satisfied at \(t = 3\). |
9. | A | \begin{align*} \int\tan^2x\,dx &= \int(\sec^2x-1)dx\\ &= \tan x – x + C \end{align*} |
10. | C | Although this question is easier to do by showing why the other 3 choices are false, this is why C is true. Consider the velocity function. We know that it will equal \(0\) at \(t = 11\) and \(t=13\). We are trying to show that the velocity function must have a stationary point in between \(t = 11\) and \(t = 13\). Assume that it doesn’t have a stationary point. Therefore the velocity function must either be always increasing, or always decreasing from \(t = 11\) to \(t=13\) as it can never switch. However if this is the case, the velocity function can never come back to \(0\). Therefore this is impossible and it must have a stationary point. |
\begin{align*}
\frac{x}{\sin(40°)} &= \frac{8}{\sin(110°)}\\
x &= \frac{8\sin(40°)}{\sin(110°)}\\
&= 5.5 \textrm{ units (1 d.p)}
\end{align*}
\(u = x^2\) | \(v = \sin x\) |
\(u’ = 2x\) | \(v’ = \cos x\) |
\begin{align*}
∴ \frac{d}{dx}(x^2\sin x) &= (2x)(\sin x) + (x^2)(\cos x) \\
&= 2x\sin x + x^2\cos x \\
\end{align*}
\(u = 2x + 1\) | \(v = x + 5\) |
\(u’ = 2\) | \(v’ = 1\) |
\begin{align*}
\frac{d}{dx}\frac{2x+1}{x+5} &= \frac{(2)(x+5)-(2x+1)(1)}{(x+5)^2}\\
&= \frac{2x+10-2x-1}{(x+5)^2}\\
&= \frac{9}{(x+5)^2}
\end{align*}
\begin{align*}
a &=2000, r=\frac{-1200}{2000} = -\frac{3}{5}\\
∴ S_\infty &= \frac{2000}{1-(-\frac{3}{5})}\\
&= 1250
\end{align*}
\begin{align*}
\int_0^1 \frac{1}{(3x+2)^2}dx &= \int_0^1 (3x+2)^{-2} dx\\
&= \frac{1}{3}\left[\frac{(3x+2)^{-1}}{-1}\right]_0^1\\
&= -\frac{1}{3}\left[5^{-1}-2^{-1}\right]\\
&= \frac{1}{10}
\end{align*}
\begin{align*}
\textrm{P(2 green or 2 purple)} &= \textrm{P(2 green) + P(2 purple)}\\
&= \frac{5}{12}\times\frac{4}{11} + \frac{7}{12}\times\frac{6}{11}\\
&= \frac{31}{66}
\end{align*}
Part (i)
\begin{align*}
\textrm{For line AB:}\\
x-2y+4&=0\\
2y &= x+4\\
y &= \frac{1}{2}x + 2\\
∴ m_{AB} &= \frac{1}{2}\\
∴ m_{AC} &= -2\\
\textrm{AC passes through (8,6)}
∴ y-6 &= -2(x-8)\\
y-6 &= -2x+16\\
∴ AC: 2x+y-22 &= 0
\end{align*}
Part (ii)
\begin{align*}
\textrm{For line AC, let } y = 0:\\
∴ 2x-22 &=0\\
x &= 11\\
∴ C(11,0)\\
\textrm{For line AB, let } y = 0 :\\
∴ x + 4 &= 0\\
x &= -4\\
∴ B(-4,0)\\
∴ BC &= 15\\
\textrm{height } &= 6\\
∴ \textrm{Area}_\textrm{triangle} &= \frac{1}{2}(15)(6)\\
&= 45 \textrm{ units}^2
\end{align*}
\begin{align*}
T_4 = a + 3d &= 6\\
a &= 6-3d\\
S_{16} = \frac{16}{2}(2a + 15d) &= 120\\
8(2(6-3d)+15d) &=120\\
12-6d+15d &= 15\\
9d &= 3\\
d &= \frac{1}{3}
\end{align*}
Part (i)
\begin{align*}
200000e^{-0.14\times31} = 2607 \textrm{ leaves (rounded down to nearest whole number)}
\end{align*}
Part (ii)
\begin{align*}
L(t) &= 200000e^{-0.14t}\\
L'(t) &= 200000(-0.14)e^{-0.14t}\\
&= -28000e^{-0.14t}\\
L'(31) &= -28000e^{-0.14\times31}\\
&= -365.02 \textrm{ leaves per day (2 d.p)} \\
& ∴ \textrm{365 leaves fall per day}
\end{align*}
Part (iii)
\begin{align*}
200000e^{-0.14t} &= 100\\
e^{-0.14t} &= \frac{1}{2000}\\
-0.14t &= \ln \frac{1}{2000}\\
t &= \frac{1}{-0.14}\ln \frac{1}{2000}\\
&= 54.29 \textrm{ days (2 d.p)} \\
&∴ \textrm{55th day} \\
\end{align*}
\begin{align*}
A &= \int_0^3\frac{3x}{x^2+1}dx\\
&= \frac{3}{2} \int_0^3\frac{2x}{x^2+1}dx\\
&=\frac{3}{2} \left[\ln(x^2+1)\right]_0^3\\
&= \frac{3}{2}\ln10 \textrm{ units}^2
\end{align*}
Start HSC Maths confidently
Expert teachers, weekly quizzes, one-to-one help! Ace your next assessment with Matrix+ Online.
\begin{align*}
2\sin x\cos x &= \sin x &&\\
2\sin x\cos x – \sin x &= 0 &&\\
\sin x(2\cos x-1) &= 0\\ &&\\
\sin x &= 0 & 2\cos x -1 &= 0\\
x &= 0, \pi, 2\pi & 2\cos x &= 1\\
&& \cos x &= \frac{1}{2}\\
&& x &= \frac{\pi}{3},\frac{5\pi}{3}\\
∴ x &= 0, \frac{\pi}{3},\pi,\frac{5\pi}{3},2\pi
\end{align*}
\begin{align*}
\textrm{Perimeter} = \textrm{line AB} + \textrm{arc AB}\\
OA = OB \textrm{ (radii of circle)}\\
∴\Delta OAB \textrm{ is isoceles}\\
∴ \angle OBA = \angle BAO &= \frac{180°-70°}{2}\\
&= 55°\\
\textrm{Applying sine rule to }&\Delta OAB:\\
\frac{\textrm{line AB}}{\sin(70°)} &= \frac{20}{\sin(55°)}\\
\textrm{line AB} &= \frac{20\sin(70°)}{\sin(55°)}\\
\textrm{Also:}\\
\textrm{arc AB} &= r\theta\\
&= 20\times\frac{70°\times\pi}{180°}\\
∴ \textrm{Perimeter} &= \frac{20\sin(70°)}{\sin(55°)} + 20\times\frac{70°\times\pi}{180°}\\
&= 47.4 \textrm{ cm (1 d.p)}
\end{align*}
Part (i)
\begin{align*}
\frac{d}{dx}(\ln x)^2 &= 2\ln x \times \frac{1}{x}\\
&= \frac{2\ln x}{x}
\end{align*}
Part (ii)
\begin{align*}
\frac{d}{dx}(ln x)^2 &= \frac{2\ln x}{x}\textrm{ (from (i))}\\
∴ \int \frac{2\ln x}{x}dx &= (\ln x)^2 + C\\
∴ \int \frac{\ln x}{x}dx &= \frac{1}{2}(\ln x)^2 + C
\end{align*}
\begin{align*}
V &= \pi\int_a^by^2dx\\
&= \pi\int_0^1(x-x^3)^2dx\\
&= \pi\int_0^1(x^2-2x^4+x^6)dx\\
&= \pi\left[\frac{x^3}{3}-\frac{2x^5}{5}+\frac{x^7}{7}\right]_0^1\\
&= \pi\left(\frac{1}{3}-\frac{2}{5}+\frac{1}{7}\right)\\
&=\frac{8\pi}{105} \textrm{ units}^3
\end{align*}
Part (i)
Part (ii)
From the sketch, there is only one solution for \(2x+4 = |x-1|\), which occurs on the negative branch.
\begin{align*}
∴2x+4 &= 1-x\\
3x &= -3\\
x &= -1
\end{align*}
\begin{align*}
\frac{dv}{dt} &= e^{2t}-4\\
v &= \frac{1}{2}e^{2t}-4t + C\\
\textrm{At }t &= 0, v=0:\\
∴ 0 &= \frac{1}{2} + C\\
C &= -\frac{1}{2}\\
∴ v&= \frac{1}{2}e^{2t}-4t-\frac{1}{2}
\end{align*}
Part (i)
\begin{align*}
f'(x) &= 3x^2+2x-1\\
\textrm{Let } f'(x) = 0:\\
∴ 3x^2+2x-1 &= 0\\
(x+1)(3x-1) &= 0\\
∴ x&=-1,\frac{1}{3}\\
f”(x) &= 6x + 2\\
f”(-1) &= -4 < 0\\
f”(\frac{1}{3}) &= 4 > 0\\
∴ \textrm{ minimum at } x&=\frac{1}{3}, \textrm{ maximum at } x=-1
\end{align*}
Part (ii)
\begin{align*}
f(x) &= x^3 + x^2 – x + C\\
f(0) &= 4\\
∴ C &= 4\\
∴ f(x) &= x^3 + x^2 – x + 4
\end{align*}
Part (iii)
\begin{align*}
\textrm{minimum at } \left(\frac{1}{3}, \frac{103}{27}\right), \textrm{ maximum at } (-1, 5)\\
\textrm{y-intercept at } (0,4)
\end{align*}
Part (iv)
\begin{align*}
f”(x) = 6x + 2 &< 0\\
6x < -2\\
x < -\frac{1}{3}
\end{align*}
The sum of the interior angles of hexagon is \((6-2)\times 180^{\circ} = 720^{\circ}\) and thus every interior angle of this regular hexagon is \(720^\circ \div 6 = 120^\circ\).
\begin{gather*}
\triangle AFE \text{ is isosceles} \quad (∵ AF = AE = 1) \\
\angle AFE = 120^\circ \quad (∵ \text{interior angle of hexagon}) \\
∴ \angle FAE + \angle AEF = 60^\circ \quad (∵ \text{angle sum of triangle}) \\
\angle FAE = \angle AEF \quad (∵ \text{base angles of isos. triangle are equal}) \\
∴ \angle AEF = 30^\circ \\
\angle AED = \angle DEF – \angle AEF = 120^\circ – 30^\circ = 90^\circ \\
∴ \triangle DEX \text{ is a right angled triangle} \\
\angle EDX = 180^\circ – 120^\circ = 60^\circ \quad (∵ \text{supplementary angles})
\end{gather*}
Therefore from applying trig ratios on \(\triangle DEX\) we have that:
\begin{gather*}
\tan 60^\circ = \dfrac{EX}{ED} = \dfrac{EX}{1} = EX \\
EX = \sqrt{3}
\end{gather*}
\begin{align*}
y &= x^3+ax^2+bx+4\\
\frac{dy}{dx} &= 3x^2+2ax+b\\
\textrm{At }x&=2, \frac{dy}{dx}=1\\
∴ 1 &= 12 + 4a + b\\
∴ 4a + b &= -11\quad\textrm{(1)}\\
\textrm{At} x &=2, y=-2\\
-2 &= 2^3 + 2^2(a) + 2b + 4\\
4a + 2b &= -14\quad\textrm{(2)}\\
\textrm{(2)} &- \textrm{(1)}\\
∴ b &= -3\\
∴ a &= -2
\end{align*}
\begin{align*}
e^{\ln x^2} &= x+6\\
x^2 &= x + 6\\
x^2 – x – 6 &= 0\\
(x-3)(x+2) &= 0\\
x &= 3, -2\\
\textrm{However, } x &> 0\\
∴ x &= 3
\end{align*}
\begin{align*}
CB &= \sqrt{q^2 + h^2}\\
AC &= \sqrt{p^2 + h^2}\\
AB^2 &= AC^2 + BC^2\\
∴ (p+q)^2 &= p^2 + h^2 + q^2 + h^2\\
p^2 + 2pq + q^2 &= p^2 + 2h^2 + q^2\\
2pq &= 2h^2\\
pq &= h^2\\
∴ h &= \sqrt{pq}\,\, (h>0 \textrm{ as h is a length})
\end{align*}
Part (i)
\begin{align*}
\angle AQP = \angle PRB = 90° \textrm{ (given)}\\
RP\,&//\,AQ \textrm{ (given)}\\
∴ \angle QAB &= \angle RPB \textrm{ (corresponding angles on parallel lines)}\\
∴ \Delta PRB&\,|||\,\Delta AQP \textrm{ (equiangular)}\\
∴ \frac{x}{1} &= \frac{8}{BR} \textrm{ (corresponding sides of similar triangles in ratio)}\\
∴ BR &= \frac{8}{x}\\
\textrm{Extend BR and AQ to meet at S}\\
∴ BS &= \frac{8}{x} + 1\\
AS &= x+8\\
∴ D^2 &= \left(\frac{8}{x} + 1\right)^2 + (x+8)^2 \textrm{ as required}
\end{align*}
Part (ii)
\begin{align*}
D^2 &= (x+8)^2 + \left(\frac{8}{x} + 1\right)^2\\
\frac{d(D^2)}{dx} &= 2(x+8) + 2\left(\frac{8}{x}+1\right)\left(\frac{-8}{x^2}\right)\\
&= 2x+16 \ – \frac{16}{x^2}\left(\frac{8}{x}+1\right)\\
&= 2x+16 \ – \frac{128}{x^3}-\frac{16}{x^2}\\
&= 2x+16 \ – 128x^{-3}-16x^{-2}\\
\textrm{Sub } x=2:\\
\frac{d(D^2)}{dx} &= 2(2) + 16 \ – 128(2)^{-3}-16(2)^{-2}\\
&= 0\\
∴ &\textrm{ stationary point at } x=2\\
\frac{d^2(D^2)}{dx^2} &= 2 + 384x^{-4} + 32x^{-3}\\
\textrm{Sub } x=2:\\
\frac{d^2(D^2)}{dx^2} &= 2 + 384(2)^{-4} + 32(2)^{-3}\\
&= 30 > 0\\
∴ D^2 &\textrm{ is minimum at } x = 2
\end{align*}
Part (i)
\begin{align*}
\textrm{P(at least 1 red hair for 2 people)} &= 1- \textrm{P(no red hair for 2 people)}\\
&= 1 – (0.98\times0.98)\\
&= 0.0396
\end{align*}
Part (ii)
\begin{align*}
\textrm{P(at least 1 red hair for n people)} &= 1- \textrm{P(no red hair for n people)}\\
&= 1- 0.98^n\\
∴ 1-0.98^n &> 0.4\\
0.6 &> 0.98^n\\
\ln{0.6} &> n\ln{0.98}\\
n &> \frac{\ln 0.6}{\ln 0.98}\\
&> 25.285…\\
& ∴ \textrm{at least 26 people}
\end{align*}
Part (i)
\begin{align*}
A_0 &= 1000000\\
A_1 &= 1000000\times(1+\frac{0.06}{4})^4-80000 = 1000000\times1.015^4-80000\\
A_2 &= (1000000\times1.015^4-80000)\times1.015^4 -80000\\
&= 1000000\times1.015^8 -80000(1+1.015^4)
\end{align*}
Part (ii)
\begin{align*}
A_n &= 1000000\times1.015^{4n} – 80000(1+1.015^4+1.015^8+…+1.015^{4(n-1)})\\
&= 1000000\times1.015^{4n} – 80000\left(\frac{1.015^{4n}-1}{1.015^4-1}\right)\\
&= 1000000\times1.015^{4n} – \frac{80000}{1.015^4-1}(1.015^{4n})+\frac{80000}{1.015^4-1}\\
&= 1.015^{4n}\left(1000000-\frac{80000}{1.015^4-1}\right)+\frac{80000}{1.015^4-1}\\
\textrm{Let }A_n = 0:\\
∴ 0 &= 1.015^{4n}\left(1000000-\frac{80000}{1.015^4-1}\right)+\frac{80000}{1.015^4-1}\\
-\frac{80000}{1.015^4-1} &= 1.015^{4n}\left(1000000-\frac{80000}{1.015^4-1}\right)\\
\frac{-\frac{80000}{1.015^4-1}}{1000000-\frac{80000}{1.015^4-1}} &= 1.015^{4n}\\
4.29266 &= 1.015^{4n}\\
\log_{1.015}4.29266 &= 4n\\
n &= \frac{1}{4}\times\frac{\ln4.29266}{\ln1.015}\\
&= 24.46\\
∴ 24 \textrm{ years}
\end{align*}
\begin{align*}
\textrm{Particle is at rest when }v&=0:\\
∴ 0 &= e^{\cos t}-1\\
1 &= e^{\cos t}\\
0 &= \cos t\\
∴ t &= \frac{\pi}{2} \textrm{ (take first solution)}\\
\end{align*}
\begin{align*}
∴ \textrm{ One application of Simpson’s rule takes points at } t=0,\frac{\pi}{4},\frac{\pi}{2}\\
\textrm{and } v= e-1, e^{\frac{1}{\sqrt{2}}}-1, 0 \textrm{ respectively}\\
\end{align*}
\(t\) | \(0\) | \(\frac{\pi}{4}\) | \(\frac{\pi}{2}\) |
\(v\) | \(e-1\) | \(e^{\frac{1}{\sqrt{2}}}-1\) | \(0\) |
\begin{align*}
∴ x &= \frac{\frac{\pi}{4}}{3}(e-1+0+4(e^{\frac{1}{\sqrt{2}}}-1))\\
&= 1.53 \textrm{ units to the right of the origin} \textrm{ (2 d.p)}
\end{align*}
Part (i)
\begin{align*}
y&=x^r\\
\frac{dy}{dx} = rx^{r-1}\\
\textrm{At }x=1:\\
\frac{dy}{dx} = r\\
∴ \textrm{equation of tangent:}\\
y-1&=r(x-1)\\
\textrm{At }y=0:\\
-1&=r(x-1)\\
\frac{-1}{r} &= x-1\\
x &= 1-\frac{1}{r}\\
&= \frac{r-1}{r} \textrm{ as required}
\end{align*}
Part (ii)
\begin{align*}
R &= \int_0^1x^r\,dx – A_\Delta\\
&= \left[ \frac{x^{r+1}}{r+1}\right]_0^1 – \frac{1}{2}(1-\frac{r-1}{r})(1)\\
&= \frac{1}{r+1} -\frac{1}{2r}\\
&= \frac{2r-(r+1)}{2r(r+1)}\\
&= \frac{r-1}{2r(r+1)} \textrm{ as required}
\end{align*}
Part (iii)
\begin{align*}
R &= \frac{r-1}{2r(r+1)}\\
&= \frac{r-1}{2r^2+2r}\\
\frac{dR}{dr} &= \frac{2r^2+2r – (r-1)(4r+2)}{(2r^2+2r)^2}\\
&= \frac{2r^2+2r – 4r^2 + 4r – 2r + 2}{(2r^2+2r)^2}\\
&= \frac{-2r^2+4r+2}{(2r^2+2r)^2}\\
\textrm{Let }\frac{dR}{dr} &= 0\\
∴ -2r^2+4r+2 &= 0\\
r^2-2r-1 &= 0\\
r &= \frac{2 \pm \sqrt{2^2-4(1)(-1)}}{2}\\
&= \frac{2 \pm \sqrt{8}}{2}\\
&= 1 \pm \sqrt{2}\\
∴ \textrm{ stationary points at } r = 1\pm \sqrt{2}
\end{align*}
\(r\) | \(-0.5\) | \(1-\sqrt{2}\) | \(-0.1\) | \(0.1\) | \(1+\sqrt{2}\) | \(3\) |
\(\frac{dR}{dr}\) | \(-2\) | \(0\) | \(48.77\) | \(49.17\) | \(0 \) | \( -0.0069\) |
\(–\) | \(+\) | \(+\) | \(–\) |
(Note: the points chosen on either side of the stationary points must be continuous!)
\begin{align*}
∴ R \textrm{ is a maximum at } r = 1 + \sqrt{2}
\end{align*}
Use the calculator to explore the HSC Marks you need to achieve your ATAR Goal.
Written by Matrix Maths Team
The Matrix Maths Team are tutors and teachers with a passion for Mathematics and a dedication to seeing Matrix Students achieving their academic goals.© Matrix Education and www.matrix.edu.au, 2023. Unauthorised use and/or duplication of this material without express and written permission from this site’s author and/or owner is strictly prohibited. Excerpts and links may be used, provided that full and clear credit is given to Matrix Education and www.matrix.edu.au with appropriate and specific direction to the original content.