Welcome to Matrix Education
To ensure we are showing you the most relevant content, please select your location below.
Select a year to see courses
Learn online or on-campus during the term or school holidays
Learn online or on-campus during the term or school holidays
Learn online or on-campus during the term or school holidays
Learn online or on-campus during the term or school holidays
Learn online or on-campus during the term or school holidays
Learn online or on-campus during the term or school holidays
Learn online or on-campus during the term or school holidays
Get HSC exam ready in just a week
Select a year to see available courses
Science guides to help you get ahead
Science guides to help you get ahead
In this post, we reveal the solutions to the 2019 HSC Maths Extension 1 Exam paper.
Join 75,893 students who already have a head start.
"*" indicates required fields
You might also like
Related courses
Our Mathematics team have been hard at work putting together the 2019 HSC Maths Extension 1 Exam Paper solutions for you. Here they are!
Have a look through these worked solutions and see how you did!
Question | Answer | Solution |
1 | A\(\) | \begin{align*} 4-x &> 0\\ 4 &> x\\ x &< 4 \end{align*} |
2 | D | \begin{align*} (2x)^2 &= x(9+x)\\ 4x^2 &= x(9+x) \end{align*} |
3 | C | \begin{align*} \frac{d}{dx} \tan^{-1}\frac{x}{2} &= \frac{\frac{1}{2}}{1+(\frac{x}{2})^2}\\ &= \frac{\frac{1}{2}}{\frac{4+x^2}{4}}\\ &= \frac{2}{4+x^2} \end{align*} |
4 | B | \begin{align*} \textrm{There is a horizontal asymptote at } y=1\\ \textrm{Hence for } y = f(x) = \frac{P(x)}{Q(x)},\\ \textrm{the leading terms of } P(x) \textrm{ and } Q(x) \textrm{ must be equal}\\ \textrm{Must be B (both leading terms are }x^2 \textrm{)} \end{align*} |
5 | A | \begin{align*} \textrm{Period}=2=\frac{2\pi}{n}, \textrm{ so }n=\pi, \textrm{ so must be A or C}\\ \textrm{Particle starts at rest, so must be A} \end{align*} |
6 | B | \begin{align*} \cos^2 x &= 1 – \sin^2 x = 1 – \left(\frac{1}{4}\right)^2 = \frac{15}{16}\\ \cos x &= -\frac{\sqrt{15}}{4}, \textrm{ as } x \textrm{ is in the 2nd quadrant}\\ \sin 2x &= 2\sin x\cos x\\ &= 2\left(\frac{1}{4}\right)\left(-\frac{\sqrt{15}}{4}\right)\\ &=-\frac{\sqrt{15}}{8} \end{align*} |
7 | C | \begin{align*} \textrm{Let roots be } -1, \alpha, \beta\\ \textrm{Product of roots} &= -\frac{q}{q} = -1\\ ∴ -\alpha\beta &= -1\\ \beta &= \frac{1}{\alpha} \end{align*} |
8 | A | \begin{align*} \textrm{Group LLL as one object, rearrange with 5 other objects } 6! \textrm{ ways}\\ \textrm{A’s are duplicate}\\ ∴ \frac{6!}{2} \end{align*} |
9 | D | \begin{align*} \cos^{-1}(-\sin x) &= \cos^{-1}(\cos(x+\frac{\pi}{2}))\\ &= x+\frac{\pi}{2}\\ ∴ &\textrm{ Straight line with gradient 1, hence D} \end{align*} |
10 | A | \begin{align*} \textrm{Domain of }f(x) \textrm{ is } x \geq -1.\\ f(-1) = -1, \textrm{ so }f(x) \textrm{ intersects the curve at }(-1,-1)\\ f(x) \textrm{ clearly decreases as }x \textrm{ increases, hence } (-1,-1) \textrm{ must be the only point of intersection.} \end{align*} |
Ace Maths Ext 1 with Matrix+
Expert teachers, weekly quizzes, one-to-one help! Learn at your own pace, wherever you are.
\begin{align*}
y&=\frac{1}{2}x + \frac{1}{2},\quad y=3x-4\\
m_1&=\frac{1}{2}, m_2=3\\
\tan\theta &= |\frac{\frac{1}{2}-3}{1+\frac{1}{2}\times3}|\\
&= |\frac{1-6}{2+3}|\\
&= 1\\
∴ \theta &= \frac{\pi}{4}
\end{align*}
\begin{align*}
\frac{x}{x+1} &< 2\\
x(x+1) &< 2(x+1)^2\\
x^2 + x &< 2x^2 + 4x + 2\\
x^2 + 3x + 2 &> 0\\
(x+2)(x+1) &> 0 \\
∴ x \ < – 2 \ \text{or} \ x>-1
\end{align*}
\begin{align*}
\angle ACB &= 90° \textrm{ (angle on a semicircle is 90 degrees)}\\
\angle BDC &= 90° \textrm{ (given)}\\
∴ \angle ACB &= \angle BDC\\
\angle BCD &= \angle CAB \textrm{ (alternate segment theorem)}\\
∴ \Delta ABC\,|&||\,\Delta CBD \textrm{ (equiangular)}\\
∴ \angle ABC &= \angle CBD \textrm{ (corresponding angles in similar triangles)}
\end{align*}
\begin{align*}
x^3 + 2x^2 – 3x \ – 7 &= (x-2)Q(x) + 3\\
x^3 + 2x^2 – 3x \ – 10 &= (x-2)Q(x)\\
x^3 + 2x^2 – 3x \ – 10 &= (x-2)(x^2 + 4x + 5) \textrm{ (by inspection)}\\
∴ Q(x) &= x^2 + 4x + 5
\end{align*}
\begin{align*}
\int 2\sin^2 4x\,dx &= \int (1-\cos 8x)\, dx\\
&= x – \frac{1}{8}\sin 8x + C
\end{align*}
(i)
\begin{align*}
(1-0.05)^8 = 0.95^8
\end{align*}
(ii)
\begin{align*}
\textrm{P(at least two winning) } &= \textrm{ P(no winning) } – \textrm{ P(one winning)}\\
&= 1- (0.95)^8 – (0.95)^7(0.05){8\choose1}
\end{align*}
\begin{align*}
\frac{dA}{dt} &= \frac{dA}{db}\times\frac{dB}{dt}\\
\frac{dB}{dt} &= 0.2\\
A &= \frac{9}{B}\\
∴ \frac{dA}{dB} &= \frac{-9}{B^2}\\
\textrm{When }A = 12, B &= \frac{9}{12} = \frac{3}{4}\\
∴ \frac{dA}{dB} &= \frac{-9}{(\frac{3}{4})^2}\\
&= -16\\
∴ \frac{dA}{dB} &= -16\times 0.2\\
&= \frac{-16}{5} \textrm{ ms}^{-1}
\end{align*}
(i)
\begin{align*}
x = \sqrt2\cos3t + \sqrt6\sin3t &\equiv R\cos(3t-\alpha)\\
&= R\cos3t\cos\alpha + R\sin3t\sin\alpha\\
R\cos\alpha &= \sqrt2\quad\quad(1)\\
R\sin\alpha &= \sqrt6\quad\quad(2)\\
(1)^2 + (2)^2: R^2\cos^2\alpha + R^2\sin^2\alpha &= 2 + 6\\
R^2 &= 8\\
R = 2\sqrt2\\
\frac{(1)}{(2)}: \tan\alpha &= \sqrt3\\
\alpha &= \frac{\pi}{3}\\
∴ x=2\sqrt2\cos(3t-\frac{\pi}{3})
\end{align*}
(ii)
\begin{align*}
\textrm{Particle is at rest at peaks of }x\\
∴ x=2\sqrt2, -2\sqrt2
\end{align*}
(iii)
\begin{equation*}
\frac{dx}{dt} = -6\sqrt2\sin(3t – \frac{\pi}{3}) = 3\sqrt2 \textrm{ or } -3\sqrt2 \textrm{ (as we are unsure which comes first)}
\end{equation*}
\begin{align*}
-6\sqrt2\sin(3t-\frac{\pi}{3}) &= 3 \sqrt2 & -6\sqrt2\sin(3t-\frac{\pi}{3}) &= -3\sqrt2\\
\sin(3t-\frac{\pi}{3}) &= -\frac{1}{2} & \sin(3t-\frac{\pi}{3}) &= \frac{1}{2}\\
3t-\frac{\pi}{3} &= -\frac{\pi}{6} & 3t-\frac{\pi}{3} &= \frac{\pi}{6}\\
3t &= \frac{\pi}{6} & 3t &= \frac{\pi}{2}\\
t &= \frac{\pi}{18} & t &= \frac{\pi}{6}\\
\end{align*}
\begin{equation*}
∴ t=\frac{\pi}{18}
\end{equation*}
\begin{align*}
x^2 &= 4ay\\
y &= \frac{x^2}{4a}\\
\frac{dy}{dx} &= \frac{x}{2a}\\
\textrm{at } x&=2ap\\
\frac{dy}{dx} &= p\\
∴ y-ap^2 &= p(x-2ap)\\
\textrm{at } x=0:\\
y – ap^2 &= -2ap^2\\
y &= -ap^2\\
∴ R(0,-ap^2)\\
SP &= PM \textrm{ (by the locus definition of the parabola)}\\
&= a + ap^2\\
&=a(p^2+1)\\
SR &= a + ap^2\\
&= a(p^2+1) \\
&= SP\\
∴ \Delta SPR &\textrm{ is isoceles}\\
∴ \angle SPR &= \angle SRP \textrm{ (base angles of isoceles triangle)}
\end{align*}
(i)
\begin{align*}
T &= 3 + Ae^{kt}\\
\frac{dT}{dt} &= kAe^{kt}\\
&= k(T-3)
\end{align*}
(ii)
\begin{align*}
T &= 3+Ae^{kt}, \textrm{ at }t=0, T=30\\
∴ 30 &= 3 + A\\
A &= 27\\
∴ T &= 3 + 27e^{kt}\\
\textrm{at } t&= 15, T= 28\\
∴ 28 &= 3 + 27e^{15k}\\
25 &= 27e^{15k}\\
e^{15k} &= \frac{25}{27}\\
15k &= \ln(\frac{25}{27})\\
k &= \frac{1}{15}\ln(\frac{25}{27})\\
\frac{dT}{dt} &= kAe^{kt}\\
&= \frac{1}{15}\ln(\frac{25}{27})(27)e^{\frac{1}{15}\ln(\frac{25}{27})t}\\
\textrm{at } t &= 60:\\
\frac{dT}{dt} &= \frac{27}{15}\ln(\frac{25}{27})e^{4\ln(\frac{25}{27})}\\
&= \frac{27}{15}\ln(\frac{25}{27})(\frac{25}{27})^4\\
&= (\frac{25}{27})^3\ln(\frac{25}{27})\,\,° \textrm{C}/\textrm{minute}
\end{align*}
\begin{align*}
\textrm{let } u &= \cos^2x\\
\frac{du}{dx} &= -2\cos x\sin x\\
du &= -\sin2x\,dx\\
x &= 0\rightarrow\frac{\pi}{4}\\
u &= 1 \rightarrow \frac{1}{2}\\
∴ \int_0^{\frac{\pi}{4}} \frac{\sin2x}{4+\cos^2x}\,dx &= \int_1^{\frac{1}{2}} \frac{-du}{4+u}\\
&= \int_{\frac{1}{2}}^1 \frac{du}{u+4}\\
&= \left[\ln(u+4)\right]_{\frac{1}{2}}^1\\
&= \ln(5) – \ln(\frac{9}{2})\\
&= \ln(\frac{10}{9})
\end{align*}
\begin{align*}
T_{r+1} &= {20\choose r}(5x)^r(2)^{20-r}\\
&= {20\choose r}5^r2^{20-r}x^r\\
\textrm{when } r&=k \textrm{ and } r=k+1, \textrm{ coefficients are equal}\\
∴ {20\choose k}5^k2^{20-k} &= {20\choose k+1}5^{k+1}2^{20-(k+1)}\\
\frac{20!}{k!(20-k)!}5^k2^{20-k} &= \frac{20!}{(k+1)!(20-(k+1))!}5^{k+1}2^{19-k}\\
\frac{\frac{20!}{k!(20-k)!}5^k2^{20-k}}{\frac{20!}{(k+1)!(20-(k+1))!}5^{k+1}2^{19-k}} &= 1\\
\frac{\frac{2}{20-k}}{\frac{5}{k+1}} &= 1\\
\frac{2k+2}{100-5k} &= 1\\
2k+2 &= 100-5k\\
7k &= 98\\
k &= 14
\end{align*}
(i)
\begin{align*}
a &= -2e^{-x}\\
\frac{vdv}{dx} &= -2e^{-x}\\
\int vdv &= \int -2e^{-x}dx\\
\frac{1}{2}v^2 &= 2e^{-x} + C\\
\textrm{when }x&=0, v=2\\
2 &= 2 +C\\
C &= 0\\
∴ \frac{1}{2}v^2 &= 2e^{-x}\\
v^2 &= 4e^{-x}\\
v &= \pm 2e^{-\frac{x}{2}}\\
\textrm{Initially, } v &= 2\\
\textrm{Thus } v &\textrm{ is positive}\\
∴ v &= 2e^{-\frac{x}{2}}
\end{align*}
(ii)
\begin{align*}
\frac{dx}{dt} &= 2e^{-\frac{x}{2}}\\
\int e^{\frac{x}{2}} dx &= \int 2dt\\
2e^{\frac{x}{2}} &= 2t + C\\
\textrm{when }t&=0,x=0\\
∴ C &= 2\\
∴ 2e^{\frac{x}{2}} &= 2t + 2\\
e^{\frac{x}{2}} &= t + 1\\
\frac{x}{2} &= \ln(t+1)\\
x &= 2\ln(t+1)
\end{align*}
(i)
\begin{align*}
\textrm{Trajectory lies on } y&=-x\\
\frac{18\sqrt3t-5t^2}{18t} &= -1\\
18\sqrt3t – 5t^2 &= -18t\\
-5t^2 + (18\sqrt3 + 18t)t &= 0\\
t(18\sqrt3 + 18 – 5t) &= 0\\
18\sqrt3 + 18 – 5t &= 0\\
5t &= 18\sqrt3 + 18\\
t &= \frac{18\sqrt3+ 18}{5}\\
∴ x &= 18(\frac{18\sqrt3+18}{5})\\
\cos45° &= \frac{18\frac{18\sqrt3+18}{5}}{OA}\\
OA &= \frac{18\frac{18\sqrt3+18}{5}}{\frac{1}{\sqrt2}}\\
OA &= \frac{18\sqrt2(18\sqrt3+18)}{5}\\
&= \frac{324(\sqrt6 + \sqrt2)}{5} \text{units}
\end{align*}
(ii)
\begin{align*}
\frac{dx}{dt} &= 18\\
\frac{dy}{dt} &= 18\sqrt3 -10t\\
\textrm{at } t&=\frac{18\sqrt3 + 18}{5}:\\
\frac{dy}{dt} &= 18\sqrt3 – 2(18\sqrt3 + 18)\\
&= -18\sqrt3 – 36
\end{align*}
\begin{gather*}
m_1 = \frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{-18\sqrt{3}-36}{18} = -\sqrt{3}-2 \\
m_2 = \tan (-45^\circ) = -1 \\
∴ \tan\theta = \left|\frac{m_1 – m_2}{1+m_1m_2}\right| = \left|\frac{-\sqrt{3}-1}{\sqrt{3}+3}\right| = \frac{1}{\sqrt{3}} \\
∴ \theta = 30^\circ
\end{gather*}
\begin{align*}
\textrm{(1) Prove true for }n&=1:\\
LHS = 1(1!) = 1\\
RHS = 2! – 1 = 1 &= LHS\\
∴ \textrm{ true for }n &= 1\\
\textrm{(2) Assume true for }n &= k:\\
∴ 1(1!) + 2(2!) + … + k(k!) &= (k+1)! – 1\\
\textrm{(3) Prove true for } n&= k+1:\\
RTP: 1(1!) + 2(2!) + … + k(k!) + (k+1)(k+1)! &= (k+2)!-1\\
LHS&: (k+1)! -1 + (k+1)(k+1)! \textrm{ (from assumption)}\\
&= (k+1)!(1+k+1) – 1\\
&= (k+1)!(k+2) – 1\\
&= (k+2)! – 1 = RHS\\
∴ \textrm{ true for } n &= k+1\\
∴ \textrm{True by the principle} &\textrm{ of Mathematical Induction for} \ n \geq1
\end{align*}
(i)
\begin{align*}
\textrm{Consider the points of intersection of }y&=x^2 \textrm{ and } y = \frac{1}{x-k}:\\
x^2 &= \frac{1}{x-k}\\
x^2(x-k) &+ 1\\
x^3 – xk – 1 &= 0
\end{align*}
\begin{align*}
\textrm{Graphically, } y=x^2 \textrm{ and } y &= \frac{1}{x-k} \textrm{ only intersect once}\\
\textrm{Hence } x^3 – xk – 1 &= 0 \textrm{ only has one real zero}
\end{align*}
(ii)
\begin{align*}
f(x) &= x^3 – kx^2 – 1\\
f'(x) &= 3x^2 – 2kx \\
x_2 &= x_1 – \frac{f(x_1)}{f'(x_1)}\\
&= k \ – \frac{k^3-k^3-1}{3k^2-2k^2}\\
&= k \ – \frac{-1}{k^2}\\
&= k + \frac{1}{k^2} \textrm{ as required}
\end{align*}
(iii)
\begin{align*}
f(x) &= x^3 – kx^2 – 1\\
f(x_1) = f(k) &= k^3-k^3-1 = -1\\
f(x_2) = f(k+\frac{1}{k^2}) &= (k+\frac{1}{k^2})^3 – k(k+\frac{1}{k^2})^2 – 1\\
&= k^3 + 3 + \frac{3}{k^3} + \frac{1}{k^6} – k(k^2 + \frac{2}{k} + \frac{1}{k^4}) – 1\\
&= k^3 + 3 + \frac{3}{k^3} + \frac{1}{k^6} – k^3 – 2 – \frac{1}{k^3} – 1\\
&= \frac{2}{k^3} + \frac{1}{k^6} > 0 \textrm{ (as k is positive)}\\
∴ f(x_1) < 0 &\textrm{ and } f(x_2) > 0\\
\textrm{By the Intermediate Value Theorem, }&\textrm{there exists a root between } x_1 \textrm{ and } x_2.\\
\textrm{But there is only one solution, }&\textrm{which must be } \alpha\\
\ ∴ x_1 < \alpha < x_2
\end{align*}
(i)
\begin{align*}
\textrm{Gradient of tangents at } x = x_0 \textrm{ of}:\\
y=\sin x \textrm{ is } \cos(x_0)\\
y=\sin(x-\alpha)+k \textrm{ is } \cos(x_0 – \alpha)\\
\textrm{The tangent is common, so:}\\
\cos(x_0) = \cos(x_0-\alpha) \textrm{ as required}
\end{align*}
(ii)
\begin{align*}
\textrm{From part (i), we have } \cos(x_0) = \cos(x_0 – \alpha)\\
x_0 \textrm{ is in the 1st quadrant, thus } \cos(x_0) > 0 \textrm{ and hence } \cos(x_0 \ -\ \alpha) > 0\\
\textrm{Hence } x_0 \ – \ \alpha \textrm{ must be in the 1st or 4th quadrant}
\end{align*}
\begin{align*}
&\textrm{If 1st quadrant:} & &\textrm{If 4th quadrant:}\\
x_0 &= x_0 – \alpha & x_0 &= 2\pi-(x_0-\alpha)\\
\alpha &= 0 & \sin(x_0) &= \sin(2\pi – (x_0 \ – \ \alpha))\\
&\textrm{Clearly false} & \sin(x_0) &= -\sin(x_0-\alpha) \textrm{ as required}\\
\end{align*}
(iii)
\begin{align*}
\sin(x_0-\alpha) + k &= \sin(x_0)\\
k &= \sin(x_0) – \sin(x_0-\alpha)\\
&= 2\sin(x_0) \textrm{ (using the result from part (ii))}\\
\textrm{We can divide }&\textrm{the results in parts (i) and (ii):}\\
\frac{\sin(x_0)}{\cos(x_0)} &= \frac{-\sin(x_0-\alpha)}{\cos(x_0-\alpha)}\\
\tan(x_0) &= -\tan(x_0-\alpha)\\
\tan(x_0) &= \tan(\alpha-x_0)\\
x_0 \textrm{ is in }&\textrm{the 1st quadrant (given)}\\
x_0 – \alpha \textrm{ is }&\textrm{in the 4th quadrant (from part (ii))}\\
∴ -(x_0-\alpha) &= \alpha-x_0 \textrm{ is in the 1st quadrant}\\
∴ \textrm{ both } x_0 &\textrm{ and } \alpha-x_0 \textrm{ are in the 1st quadrant}\\
\textrm{ and } \tan(x_0) &= \tan(\alpha-x_0)\\
∴ x_0 &= \alpha-x_0\\
x_0 &= \frac{\alpha}{2}\\
∴ k &= 2\sin(\frac{\alpha}{2})
\end{align*}
Use the calculator to explore the HSC Marks you need to achieve your ATAR Goal.
Written by Matrix Maths Team
The Matrix Maths Team are tutors and teachers with a passion for Mathematics and a dedication to seeing Matrix Students achieving their academic goals.© Matrix Education and www.matrix.edu.au, 2023. Unauthorised use and/or duplication of this material without express and written permission from this site’s author and/or owner is strictly prohibited. Excerpts and links may be used, provided that full and clear credit is given to Matrix Education and www.matrix.edu.au with appropriate and specific direction to the original content.