Welcome to Matrix Education
To ensure we are showing you the most relevant content, please select your location below.
Select a year to see courses
Learn online or on-campus during the term or school holidays
Learn online or on-campus during the term or school holidays
Learn online or on-campus during the term or school holidays
Learn online or on-campus during the term or school holidays
Learn online or on-campus during the term or school holidays
Learn online or on-campus during the term or school holidays
Learn online or on-campus during the term or school holidays
Get HSC exam ready in just a week
Select a year to see available courses
Science guides to help you get ahead
Science guides to help you get ahead
In this article, we’re going to discuss Year 10 trigonometric ratios. First, we’ll explain the theory and rules for trigonometric ratios. Then we’ll work through some questions with you. Finally, we’ve given you some concept check questions where you can test your knowledge and check your answers against our worked solutions.
Year 10 Trigonometric Ratios has the following outcomes for students to meet:
So, what do these mean for you? Remember when you did Trigonometry in Year 9? In this unit, you will build on that knowledge and learn how to apply this to solve real-life problems.
Trigonometry, which comes from the Ancient Greek words trigōnon (triangle) and metron (measure), is exactly that: the tools which we use to measure triangles.
This subject guide will focus on Trigonometric Ratios directly, and talk about what the sine, cosine and tangent ratios mean and how to use them.
Before reading this guide, we assume you have got a firm grasp of:
In this guide, we will cover:
For more trigonometric applications including graphing and word problems, see our other subject guide: Further trigonometry (Applications).
A trigonometric function (for example sin, cos, tan) takes an ANGLE and gives you the corresponding RATIO of lengths in a right-angled triangle.
Below is a table of what each ratio corresponds to in a right triangle:
\(\sin(x) :\) $$\frac{\text{Opposite}}{\text{Hypotenuse}}$$ | $$\cos(x):$$ $$\frac{\text{Adjacent}}{\text{Hypotenuse}}$$ | $$\tan(x): $$ $$\frac{\text{Opposite}}{\text{Adjacent}}$$ |
$$ \text{cosec}(x):$$ $$\frac{\text{Hypotenuse}}{\text{Opposite}}$$ | $$ \sec(x):$$ $$\frac{\text{Hypotenuse}}{\text{Adjacent}}$$ | $$\cot(x): $$ $$\frac{\text{Adjacent}}{\text{Opposite}}$$ |
The ratios in the second row are known as “reciprocal ratios”, because they are the reciprocals of the corresponding ratio in the first row.
In addition to the reciprocal ratios, the trigonometric ratios are linked by their complementary angles.
A table of these relations is available below:
$$ \sin(x): $$ $$\cos(90-x)$$ | $$\cos(x):$$ $$\sin(90-x)$$ | $$ \tan(x):$$ $$\cot(90-x)$$ |
$$ \text{cosec}(x): $$ $$\sec(90-x)$$ | $$\sec(x):$$ $$\text{cosec}(90-x)$$ | $$ \cot(x):$$ $$\tan(90-x)$$ |
A number of common trigonometric ratios which appear in high school are listed below:
Each base angle in the range \(0° < x < 90°\) has many related angles, which can lie in different quadrants.
Except for the sign (positive or negative), the trigonometric ratio of a larger angle is the same as the trigonometric ratio of its related base angle.
To find the base angle of a related angle, try adding or subtracting multiples of \(360°\) until the angle is in the range \(0° -360°\).
Then use the above transformations \((180-x°, 180+x°, 360-x° )\) to get the angle into the first quadrant.
When calculating trigonometric ratios, the quadrant which the angle lies in affects the sign of the ratio.
The mnemonic ALL STATIONS TO CENTRAL can be used to remember which ratios are positive in the given quadrants:
To solve a trigonometric equation, the inverse trigonometric functions are available on your calculator (in yellow, above the regular \(\sin, \cos \text{and} \tan\) keys).
A question might ask to to solve for \(x\), given that \( \sin x = 0.7\).
The solution would then be \(x=\sin^{-1} 0.7 = 44°\) (to the nearest degree).
1. Given that the trigonometric ratio \(\sin x = 7\over10\) and \(x\) is in the first quadrant, find the exact value of the following expressions:
a) $$\text{cosec} x $$
b) $$\cos x$$
2. Find \(x\), if \(0° <x<180°\):
a) $$\cos x = \frac{1}{2}$$
b) $$\tan x = 0.6$$
c) $$\sin x = 0.4$$
3. Express the following ratios in exact form.
a) $$\sin 30°$$
b) $$\cos 300°$$
c) $$\tan -585°$$
1.
a) Since \(\text{cosec} x\) is the reciprocal of \(\sin x\), \(\text{cosec} x = \frac{1}{\frac{7}{10}} = \frac{10}{7}\).
b) To do this question, we need to draw a triangle:
For this triangle, we know the ratio of 2 sides from \(\sin x\). To find the other side, we can use Pythagoras’ theorem:
$$y^2=10^2-7^2=51$$
Hence
$$y=\sqrt {51}$$
Then, since \(\cos\) is adjacent over hypotenuse,
$$\cos x = \frac{\sqrt{51}}{10}$$
2.
a. This is an exact trigonometric ratio, as you should recall, so $$x=60°$$
b. Using the \(\tan^{-1} \)button on our calculator, we have:
\(x = \tan^{-1} 0.6 = 31°\) (nearest degree).
c. Using the \(\sin^{-1}\) button on our calculator, we have
$$x = \sin^{-1} 0.4 = 24°$$ (nearest degree)
However, in the range $$0° < x < 180°$$
there is another solution:
$$x = (180 – \sin^{-1} 0.4 )° = 156°$$
Hence:
$$ x = 24° \text{or} 156°$$
3.
a) From our list, we know that $$\sin 30° = \frac{1}{2} $$
b) The angle lies in the 4th quadrant; and \(\cos\) is positive in the 4th quadrant.
The related angle is \(360 – 300 = 60°\), so \(\cos 300° = \frac{1}{2}\)
c) First, we add 2 multiples of 360 to get the angle into the range \(0°<x<360°\):
$$\tan (-585 + 720)° = \tan 135°$$
Then we note that it’s in the 2nd quadrant, making it negative for tan.
Then we apply the transformation \(180-135 = 45°\) to get it into the first quadrant. Since \(\tan 45° = 1\),
we have \(\tan -585° = -1\).
In our next article, we show you the practical applications of what you’ve learned in trigonometry so far.
© Matrix Education and www.matrix.edu.au, 2023. Unauthorised use and/or duplication of this material without express and written permission from this site’s author and/or owner is strictly prohibited. Excerpts and links may be used, provided that full and clear credit is given to Matrix Education and www.matrix.edu.au with appropriate and specific direction to the original content.