Year 12 Maths Extension 1

Lesson 6 Revision – Permutations and Combinations, PHP & The Binomial Expansion

1. Permutations

□ Ordered Arrangements with Repetition

- The topic of permutations develops efficient techniques to determine the number of different ways certain events can happen.
 - The events will occur in succession and the order in which they occur matters.
- In counting ordered selections with repetition allowed, the number of objects to choose from does not change as each event is completed.
- Using the multiplication principle, we can imagine each of the n objects being able to be placed into each of the k boxes, and so the number of selections is:

Ordered arrangements of n objects into k boxes with repetition is n^k

□ Ordered Arrangements without Repetition

- In counting ordered selections without repetition, the number of objects to choose from decreases by 1 as each event is completed.
- This means that the number of arrangements of n objects into k boxes will be $n \times (n-1) \times (n-2) \times ... \times (n-k+1)$. This is sometimes written as

Ordered arrangements of n objects into k boxes without repetition

$$n(n-1)(n-2)...(n-k+1) = {}^{n}P_{k}$$

 \blacksquare ${}^{n}P_{k}$ stands for "n permute k".

Concept Check 1.1

(a)) A group of 6 friends including Selina and Don are sitting on a couch watching tv as demonstrated below.					
	ow many ways can Selina be sitting anywhere to the left of Don? [1]	_				
(b)	car number plate has three letters of the alphabet followed by three digits selected from t gits 1,2,,9. How many different number plates are possible if repetition of the letters a gits is not allowed? ^[2]					
		_				
(c)	ing the letters of the word <i>SHARPEN</i> , how many:					
	Three-letter codes can be formed. [3]	1				
	Four-letter codes can be formed. [4]	1				
) Six-letter codes can be formed without repeating any letter? [5]	1				
		-				

\square Notation for Permutation, ${}^{n}P_{k}$

We now want to find a concise form for

$${}^{n}P_{k} = n \times (n-1) \times (n-2) \times ... \times (n-k+1)$$

Remembering our factorial notation learnt in the Binomial Theory lessons:

$$n! = n \times (n-1) \times (n-2) \times ... \times (n-k+1)(n-k)(n-k-1) \times ... \times 3 \times 2 \times 1$$
 and
$$(n-k)! = (n-k)(n-k-1) \times ... \times 3 \times 2 \times 1$$

■ So, multiplying top and bottom of ${}^{n}P_{r}$ by (n-r)!, we see that:

$${}^{n}P_{k} = \frac{n \times (n-1) \times (n-2) \times ... \times (n-k+1) \times (n-k)!}{(n-k)!}$$
$$= \frac{n!}{(n-k)!}$$

$${}^{n}P_{k}=\frac{n!}{(n-k)!}$$

□ Ordered Arrangements involving Restrictions

- Let us first assume there are n different element to be arranged in a line. The number of ordered selections (without replacement) of n elements from a set of n elements is $n \times (n-1) \times (n-2) \dots 3 \times 2 \times 1 = n!$
- This is called a PERMUTATION of n elements selected from a set of n different elements.

Number of Ordered Arrangements of
$$n$$
 Objects Without Restriction $= n!$

- Note that the most common type of permutation and combination questions involve a restriction on how we can arrange our set.
- When a problem presents to you any restrictions, always deal with any restrictions first, then arrange the remaining elements.

Further Review of Permutations

- The arrangement of n elements where one element is before another element is $\frac{n!}{2}$
 - Eg: Arrangements of the set $\{A, B, C, D, E\}$ where A is before B is $\frac{5!}{2}$.
- The number of arrangements of n objects in a circle is (n-1)!

- The number of arrangements of n objects on a necklace is $\frac{(n-1)!}{2}$.
 - The clockwise and anti-clockwise arrangements of the beads are the same arrangements.

Concept Check 1.2

(a)	ın r	now many ways can 4 boys and 3 girls be arranged in a line it:
	(i)	There are no restrictions? [6]
	(ii)	The boys and girls alternate? [7]
	(iii)	Boys and girls are in separate groups? [8]
	(iv)	Two particular boys X and Y want to remain together? [9]
(b)		e letters of the word <i>EXTENSION</i> are arranged in a straight line. How many ways can this done, if:
	(i)	There are no restrictions? [10]
	(ii)	The word is to commence and end with the same letter? [11] 2

174 Our students come first

(iii)	The word had the two Es together? [12]
	George's cupboard there are three black and four white shirts that are identical in size and ape except for their colour. The shirts are hung on a rack in a line.
(i)	George is very disorganised and hangs the shirts up in random order. How many differen arrangements of the 7 shirts are possible? [13]
(ii)	How many different arrangements of just four of these shirts are possible? [14]

Concept Check 1.3

(i)	There are no restrictions. [15]	ì
(ii)	At least two of the girls are together. [16]	
(iii)	All the boys are together. [17]	
Fou	r married couples are to be seated around a circular table for dinner.	
(i)	In how many different ways can the people be seated around the table? [18]	,
(ii)	If each married couple is to be seated together, in how many ways can this be done? ^[7]	9] -
		_

(a) The 4 boys and 4 girls are seated around a circular table. How many different ways can the

) Ho	ow many ways are there of arranging 10 different marbles:
(i)	In a line? [21]
(ii)	In a circle? [22]
(iii)	If a string is sewn through all of the marbles to create a necklace. How many different necklaces can be made? [23]