Year 12 Maths Advanced

Lesson 6 Revisiting Exponential Growth and Decay

MATRIX EDUCATION

1. Exponential Growth

□ Definition

- Exponential Growth or Decay are terms that describe a special rate of change that occurs in many situations.
- Exponential Growth is the situation where the rate of increase of a quantity is directly proportional to the amount of the quantity present, that is:

$$\frac{dQ}{dt} = kQ$$

• Where k is assumed constant and is called the growth rate.

If
$$k>0$$
 , then $\frac{dQ}{dt}>0$ and Q is increasing. If $k<0$, then $\frac{dQ}{dt}<0$ and Q is decreasing.

■ This is also sometimes known as "Natural Growth" and "Natural Decay", as the population is changing by a ratio of the number of people in the population, which can be a good description of natural population dynamics.

□ Formula for Exponential Growth

Memorise the following formula, and proof of solution

$$Q = Ae^{kt}$$
 is a solution to $\frac{dQ}{dt} = kQ$.

■ To prove this, we use the following method: This is a common exam proof.

$$\frac{dQ}{dt} = kQ$$

$$LHS = \frac{dQ}{dt}$$

$$= \frac{d}{dt}(Ae^{kt})$$

$$= LHS$$

Example

The population of a town is increasing at a rate proportional to the existing population, where P is the population and t is time in years.

$$\frac{dP}{dt} = kP$$

(a) Show that $P = Ae^{kt}$ is a solution to the equation $\frac{dP}{dt} = kP$.

1

Using $\emph{LHS} = \emph{RHS}$, show that $rac{dP}{dt} = \emph{kP}$,where $\emph{P} = \emph{Ae}^{\emph{kt}}$.

(b) The initial population of the town is 8000. Ten years later, the population of the town is projected to be 15000. Find the exact values of A and k. [1]

2

Step 1: When t = 0, P = 8000. Hence find A.

Step 2: When t = 10 and P = 15000. Hence find k.

(c)	Determine the population in 20 years' time. [2]	2
	Using the answer for \emph{A} and \emph{k} from part (ii), find \emph{P} when $\emph{t}=20$.	
(d)) When will the population be 30 000? [3]	1
	Solve for t when $P=30\ 000$.	
Dis	scussion question	
	ppose that population increases exponentially at 2% per year. Is k equal to $0.02?^{ ext{[4]}}$	
_		

170 Our students come first

Concept Check 1.1

(a) The number of bacteria increases at a rate proportional to the number of bacteria present at any time t, measured in minutes i.e. $\frac{dN}{dt} = kN$.

Note to students

As soon as you see $\frac{dN}{dt} = kN$ you may use $N = Ae^{kt}$

(i) Show that $N = Ae^{kt}$ is a solution to the differential equation.

1

(ii) The number of bacteria doubles in size every 19 minutes. Find the value of k. [5]

2

Note to students

If you are missing the initial amount start with 100%.

(iii) How long will it take for the population to triple? [6]

2

How many peo 2000? ^[8]	ople in this African commur	nity were suffering from AIDS a	t the end o

(b) At the beginning of 1985 a small African township reported 50 people suffering from a mysterious disease that was later identified as AIDS. By the end of 1987, the number of

r) At what r	ate was the number of	people suffering fro	m AIDS in this com	nmunity increasi
r) At what r at the end	ate was the number of d of 2000? ^[10]	people suffering fro	m AIDS in this com	nmunity increasi
at the end	ate was the number of d of 2000? ^[10]	people suffering fro	m AIDS in this com	nmunity increasi
at the end	ate was the number of d of 2000? [10]	people suffering fro	m AIDS in this com	nmunity increasi
at the end	ate was the number of d of 2000? ^[10]	people suffering fro	m AIDS in this com	nmunity increasi
e) At what r	ate was the number of d of 2000? [10]	people suffering fro	m AIDS in this com	nmunity increasi
at the end	ate was the number of d of 2000? ^[10]	people suffering fro	m AIDS in this com	nmunity increasi