# Year 11 Physics Electricity and Magnetism

# Lesson 4 Ohm's Law Sample resources

MATRIX EDUCATION

# **1.** Electric current (I) [A]

## □ What is electric current?

- Electric current, *I*, is defined as the rate at which charge flows past a given point in a conductor.
- This can be expressed mathematically as

$$I = \frac{q}{t}$$

where:

*I* = electric current (A)

q = net charge (C)

t = time elapsed (s)

- The SI unit of current is the Ampere (A) (equal to coulombs/second).
- If thirty electrons pass a particular point in a conductor in 2 seconds, what is the magnitude of electric current?<sup>1</sup>
- One ampere is defined as the flow of one coulomb of charge past a fixed point in a conductor in one second.

- 1 A = 1 C/s.

- If a current of 1 A flows through a conductor, how many electrons are passing a point per second?<sup>2</sup>
- <u>Watch video (Length 5:19)</u>: The fundamentals of current and voltage explained.

## □ Conventional current

- Both positive and negative charges may flow to create current. However, in Lesson 1 we learned that the electrical behaviour of solids is actually a result of the movement of negative charges (electrons) only.
  - Electrons move from the negative terminal to the positive terminal. This flow of negative charge is called electron flow.



- However, current *I* is defined as a flow of positive charge.
- This flow of positive charge is from the positive to the negative terminals. This flow is called conventional current.



- When we talk about current, we will always mean the flow of positive charges, conventional current.
  - Conventional current then describes the imaginary flow of positive charges in the opposite direction to the actual electron flow.
  - However, conventional current is electrically the same as electron flow in the opposite direction, so it doesn't matter that we use conventional current to solve problems in circuits.

### □ Water analogy for current

- A common analogy that is made when discussing the behaviour of electric currents is water through a pipe.
  - You can think of the amount of current as analogous to the amount of water flowing through the pipe.
  - The pipe on the left is larger and has more water flowing through it. That represents more current.
  - The pipe on the right has less water flowing through it. That represents less current.



92 Our students come first

## □ Types of electric current

- There are two types of electric current:
  - Direct Current (DC)
  - Alternating Current (AC)
- In DC, the net flow of charge carriers is moving in one direction.
  - Many everyday gadgets containing batteries such as calculators and phones run on DC.
  - A graph of current versus time for **Direct Current (DC)** is shown below:



- In AC, the charge carriers are flowing backwards and forwards periodically.
  - AC is obtained from the mains supply and is mainly used for operating motors and for power transmission because it is easily transformed.
  - AC is converted into DC to power electronic devices such as phones, tablets and computers.
  - A graph of current versus time for Alternating Current (AC) is shown below:



 Watch video (Length: 0:42): Electricity can be measured and displayed using a device called an oscilloscope.

## □ Conditions for current flow

- In order for an electric current to exist between two points, there must be:
  - A closed conducting path between the two points for charges to flow.
  - A **potential difference** across the two ends of the conducting path.
- Let's use the water analogy again to explain the conditions for current flow.

| Condition  | Water pipes                          | Electric circuit                               |
|------------|--------------------------------------|------------------------------------------------|
| Closed     | There must be an <b>unbroken</b> and | The circuit must be complete.                  |
| conducting | unblocked tube for water to flow     |                                                |
| path       | through.                             | If there is a <b>break</b> in the circuit, the |
|            |                                      | flow of charge will stop. This is              |
|            | If there is a blockage in the pipe,  | referred to as an <b>open</b> circuit.         |
|            | the water flow will stop.            |                                                |
| Potential  | There must be a height               | There must be a potential                      |
| difference | difference between the two ends      | difference across the circuit to               |
| across the | of the pipe to cause the water to    | cause current to flow.                         |
| conducting | flow (downhill).                     |                                                |
| path       |                                      | When there is a greater potential              |
|            | When there is a greater height       | difference across the two ends of              |
|            | difference between the two ends      | the circuit, the flow of current is            |
|            | of the pipe, the flow of water is    | increased.                                     |
|            | increased.                           |                                                |
|            |                                      | The potential difference between               |
|            | The height difference allows         | the start and end of the circuit               |
|            | gravitational potential energy to    | provides the energy to do work                 |
|            | be converted into kinetic energy,    | on the charge and "pump" it                    |
|            | causing the water to flow.           | through the circuit.                           |

• The conditions are illustrated below:



#### 94 Our students come first

Current and electric potential difference

Recall that electric potential difference or voltage V is defined as the change in electric potential energy per unit charge when moving a charge between two points in a conductor. Mathematically,

$$V = \frac{\Delta U}{q}$$

- One volt means one joule of energy per coulomb of charge, 1 V = 1 J/C.
- This allowed us to determine the work done on a charge by an electric field as

$$W = qV$$

- Let's use the water analogy to explain why a greater current flows as a result of a greater difference in potential between two points in a circuit.
  - A greater difference in potential energy for water in a pipe is achieved by raising one end of the pipe to a greater height.
  - The rate of flow of water in a pipe will increase by having the water fall
     through a greater height, which increases the pressure in the pipe and thus
     applies more force on each parcel of water.



- Similarly the current in a wire may be increased by increasing the potential difference across it.
  - Increasing the potential difference across the terminals of the circuit leads to a stronger electric field being established. This in turn means the charges flowing across the terminals are given a greater "push" (F = qE) and are able to flow through the circuit at a faster rate.
  - As a result, current (the rate of flow of charge) through the wire increases.
- The natural direction for particles to move is from a region of higher to lower potential energy (think of things falling downhill).
  - A large difference in potential means a large "push" is given to each particle and hence there is a greater rate of current flow.
  - In the water pipe analogy, gravitational potential energy is converted into kinetic energy as the water flows through the pipe.
  - What energy transformations occur in the electrical circuit?<sup>3</sup>
- Electrochemical cells such as batteries are often used to produce this potential difference.
  - An AA battery produces a potential difference of 1.5 V between its terminals.
  - Calculate the amount of energy used per coulomb of charge in moving it between the terminals.<sup>4</sup>

## □ Current flow in DC circuits

- Direct current (DC) is the one-directional flow of charge. DC is produced by sources such as batteries (electrochemical cell) and solar cells.
  - Figure (a) represents a DC circuit in which conventional current flows through the wire from the positive terminal to the negative terminal of the electrochemical cell in an external circuit.
  - Figure (b) represents the circuit diagram of the DC circuit.



- How do the positive charges move against the electric field produced by the positive and negative terminals?
  - The positive terminal of the cell is at a higher electric potential than the negative terminal of the cell.
  - Charges will flow from a point of higher potential energy to a point of lower potential energy. Therefore, positive charges will flow through the circuit and to the negative terminal.
  - When the positive charges reach the negative terminal, work must be done against the field to move the charge against the electric field.
  - The electrochemical cell provides this energy in the form of chemical potential energy.

# **2.** Resistance (R) $[\Omega]$

## □ What is resistance?

- Resistance is defined as a material's **tendency to resist the flow of charge**.
  - Conductors are materials through which electric charges move quite freely.
     These have low resistance.
  - The diagram below shows the structure of a metal. Electrons move through the metal colliding with the metal atoms, losing speed, generating heat and reducing the current.



- Insulators are materials through which charge cannot move freely. The electrons are fixed to the individual atoms so charge cannot flow. These have very high resistance.
- Following the water analogy, you can think of resistance like friction through a pipe or a constriction in the pipe.
  - The water is set moving by potential energy. A narrower or longer pipe will cause more friction (more resistance) and will result in a smaller volume of water flowing (less current).



#### 98 Our students come first

## Definition of resistance

- Applying a voltage on a circuit will result in the flow of current. How much current flows depends on the resistance.
  - Larger resistance results in a smaller current.
  - Smaller resistance results in larger current.
- The definition of resistance is the ratio of the voltage to the current:

$$R = \frac{V}{I}$$

Where: R is the resistance. The SI unit for resistance is the **ohm** ( $\Omega$ )

*V* is the voltage measured in volts (V)

*I* is the current measured in amps (A)

- What does it mean for a circuit to have a resistance of 1  $\Omega$ ?<sup>5</sup>
- Simulation: (PhET HTML5) Circuit construction kit.

## 3. Ohm's Law

- Definition of Ohm's Law
  - - This requires the resistance to be constant.
    - Mathematically, Ohm's Law is written as:

$$V = IR$$

Where: V = potential difference across the conductor (V)

I = current through the conductor (A)

- R = electrical resistance ( $\Omega$ ), assumed to be **constant**.
- A 20.0  $\Omega$  resistor has a current of 5.0 A flowing through it. What is the potential difference across the resistor?<sup>6</sup>
- Ohm's Law is not a fundamental physical principle, but rather an empirical relationship obeyed by most metals under a range of circumstances. It was first observed by German physicist Georg Simon Ohm.
  - Materials that obey Ohm's Law (have a constant resistance) are called ohmic conductors or ohmic resistors.
  - Non-ohmic conductors do not obey Ohm's Law. In these materials the resistance depends on other variables like voltage or current, and so the voltage and current are not proportional.
- Note that although the two equations are the same:
  - $R = \frac{V}{I}$  is the definition of resistance and applies to all situations.
  - Ohm's Law V = IR assumes resistance is constant and applies to ohmic conductors only.
- Demonstration: (PhET HTML5) Ohm's Law relationship.

## □ Ohmic conductors

- For an ohmic conductor, the resistance is constant and does not depend on the voltage or current.
- Ohm's Law states that voltage and current are proportional. A graph of current vs.
   voltage for an ohmic conductor is shown below.
  - Draw the line of best fit on the graph below and **identify any outliers**.



Is this resistor ohmic? Justify your answer.<sup>7</sup>

- The graph shows that *I* is proportional to *V*. Ohm's Law tells us that  $I = \frac{1}{R}V$ . What does the slope of the graph represent?<sup>8</sup>



- Use your graph to calculate the resistance of the resistor. <sup>9</sup>
- The figure below shows the relationship between current and voltage for:



Which graph represents a material that obeys Ohm's Law? Explain your choice.<sup>10</sup>

## □ Non-ohmic conductors

- For a non-ohmic conductor, the resistance is not constant, and depends on other variables like the voltage or current.
- An example of a current vs voltage graph for a non-ohmic conductor is shown below.



## 4. Lesson review questions

#### Concept Check 4.1

 Complete the following statements.
 2

 The conventional electric current from a battery flows from the \_\_\_\_\_16
 16

 terminal to \_\_\_\_\_\_17 terminal of the battery.
 16

 Electron flow therefore is from the \_\_\_\_\_\_18 terminal to the \_\_\_\_\_\_19 terminal of the battery.
 17

#### Concept Check 4.2

(a) On the circuit diagram below, indicate the direction of electric current and the direction of electron flow.<sup>20</sup>
 2



- (b) A current of 0.10 A flows through the light bulb for 30 s. How much charge passed through the conductor?<sup>21</sup>
- (c) How many electrons flow past a point in a circuit in one second if the current through the circuit is 0.10 A?<sup>22</sup>