Year 11 Maths Advanced

Lesson 8 Absolute Values

3. Graphs of Absolute Values

☐ Sketching Absolute Value Graphs

Absolute value graphs:

- 1) Simplify the expression involving absolute values for each restriction on x.
- 2) Sketch each "piece" of the graph in the restricted domains and label the branches.
- The standard absolute value curve y = |x| looks like a "V" with a cusp at the origin.
- This absolute value can be simplified with restrictions:

$$|x| = \begin{cases} x; & x > 0 \\ 0; & x = 0 \\ -x; & x < 0 \end{cases}$$

- Therefore the two branches represent the lines y = x and y = -x.

Concept Check 3.1

Label the branches of each of the following absolute value graphs

(a)
$$y = |x| + 1$$

(b) y = |x + 1| and y = |x - 1|

Example 1:	Draw the graph of $y = x + 2 $ [16]
Solution:	
Step 1:	Simplify the expression for each restriction that is placed on x
Step 2:	Draw the different graphs in each of the restricted domains and
Otop 2.	label the branches
	<i>y</i> †
	<u> </u>

Note to students

If you know how to sketch the curve using knowledge of **graphical transformations** (to be studied in-depth next term), you can avoid investigating each restriction.

Draw the graph of x = |y - 3| [17] Example 2: Simplify the expression for each restriction that is placed on xSolution: Draw the different graphs in each of the restricted domains and label the branches

Concept Check 3.2

Sketch the following graphs on the coordinate plane, showing all intercepts.

(a)
$$y = |x - 3|$$
 [18]

1

(b)
$$y = |3x + 2|$$
 [19]

1

(c)
$$y = 2|x|$$
 [20]

1

(d)
$$y = 2 - |x|^{[21]}$$

1

Discussion

Is |1 - 2x| the same as |2x - 1|? [22]

4. Equations involving Absolute Values

□ Algebraic Approach

■ Solving equations involving absolute values makes heavy use of the fact:

If
$$|a| = b$$
 then $a = b$ or $-a = b$

■ Simply solve the two equations and make sure you test the solutions.

Example 1: Solve |2x - 3| = 5 [23]

Solution:

Step 1: Remove the absolute value signs by considering the two cases.

Solve these equations.

$$2x - 3 = 5 -(2x - 3) = 5$$

Step 2: Test the solutions

Example 2: Solve
$$|2x - 3| = 3x + 1$$
 [24]

Solution:

Step 1: Remove the absolute value signs by considering the two cases.

Solve these equations.

Step 2: Test the solutions

Concept Check 4.1

Solve the following equations. Remember to test your solutions.

(a) |3x - 1| = 11 [25]

2

(b)
$$|4 - 2x| = -6$$
 [26]

1

Note to students

This one can be done without algebra! Can an absolute value ever produce a negative answer?

(c) |5 - 2x| = 7 [27]

3

300Our students come first

□ Using Restrictions

Solving absolute value equations using restrictions:

- 1) Simplify the expression involving the absolute value for each restriction on x.
- 2) Solve the equations.
- 3) Check the solution satisfies the restriction placed on x.

Example 1:	Solve $ 3 - x = 2x^{[28]}$
Solution:	Simplify the expression involving the absolute value for each restriction on x When $x \ge 3$; $ 3-x = -(3-x) = -3+x$ When $x \le 3$; $ 3-x = 3-x$ Solve the equations When $x \ge 3$;
	When $x \le 3$; Check the solutions satisfy the restrictions on x in each case

Example 2:	Solve $\frac{ x-2 }{x^2-4} = \frac{3}{4}$ [29]
Solution:	Simplify the expression involving the absolute value for each
	restriction on x
	When $x > 2$;
	When $x < 2$;
	Solve the equations
	When $x > 2$;
	When $x \leq 3$;
	Check the solutions satisfy the restrictions on x in each case