Year 10 Maths

Lesson 6 Probability 1

1. The Language Of Probability

☐ The probability continuum

- Probability is the field of mathematics that deals with chance. It assigns a value between 0 and 1 inclusive to indicate the likelihood that an event will occur.
 - If it is impossible that an event will occur, it has a probability of 0.

Discussion
Describe an event that has a probability of 0.

- If an event is **certain** to occur, it has a probability of 1.

All other events between these two extremes are assigned a probability between 0 and 1. The number line below shows how different probabilities are interpreted.

DISCUSSION

Describe an event that has an even chance of occurring.

Random experiments

- A random experiment is a process in which we observe something uncertain and cannot predict the results (the outcomes).
- The set of all the possible outcomes of a random experiment is called the **sample** space. For example:
 - Sample space for flipping a coin: {H, T}
 - Sample space for choosing a card from a standard deck:

Sample space for rolling a die twice:

		Second throw					
		1	2	3	4	5	6
	1	(1,1)	(1, 2)	(1,3)	(1,4)	(1,5)	(1,6)
	2				(2,4)		
First	3	(3,1)	(3, 2)	(3,3)	(3,4)	(3,5)	(3,6)
throw	4	(4,1)	(4, 2)	(4,3)	(4, 4)	(4,5)	(4,6)
	5	(5,1)	(5, 2)	(5,3)	(5,4)	(5,5)	(5, 6)
	6	(6,1)	(6, 2)	(6,3)	(6,4)	(6,5)	(6, 6)

- If there are n possible outcomes in a random experiment and each outcome has an equal chance of occurring, the outcomes are called **equally likely** outcomes and assigned the value $\frac{1}{n}$. For example:
 - On Board A, $P(Red) = P(Black) = P(White) = \frac{2}{6} = \frac{1}{3}$. These are equally likely outcomes.
 - In contrast, on Board B, $P(\text{Red}) = \frac{3}{6} = \frac{1}{2}$, $P(\text{Black}) = \frac{1}{6}$ and $P(\text{White}) = \frac{2}{6} = \frac{1}{3}$. These are NOT equally likely outcomes.

Concept Check 1.1

For the following random experiments:

- (i) List the sample space.
- (ii) State whether the outcomes are equally likely or not.
- (a) Tossing an unbiased coin once [1]

- (b) Simultaneously selecting 2 discs from a bag containing 3 red, 2 green and 1 white disc [2]
- (c) Undertaking a test to gain a driving licence [3]

(d) Spinning the spinner shown in the diagram below once [4]

(e) Select a letter from a page of print. [5]

120 Our students come first

Concept Check 1.2

(a)	"A bag contains green, black, white and red jellybeans. Therefore, if I choose one jellybean at random from the bag, the probability that it is black is $\frac{1}{4}$." Is this statement true or false? Explain your answer. [6]
(b)	Two coins are tossed simultaneously. For this experiment, the possible outcomes are 2 heads, 1 head and no heads. Are these outcomes equally likely? Justify your answer. [7]
(c)	"There are 26 letters in the alphabet. There are five vowels in the alphabet. This means that when I select a letter at random from a page of print, the probability that the letter will be a vowel is $\frac{5}{26}$." Is this statement correct? Give a reason for your answer. [8]

2. Experimental Vs Theoretical Probability

□ Experimental probability

Experimental probability, or relative frequency, is calculated using the results of an experiment conducted many times. Mathematically,

Relative frequency =
$$\frac{\text{Number of times the event occured}}{\text{Total number of trials}} = \frac{f}{\sum f}$$

Use this <u>website</u> to conduct a coin toss experiment. In the table below, record the number of heads that appear in 10 trials.

Number of heads	Frequency	Relative frequency
0		
1		
2		
Total	10	

■ Experimental probability is never fixed. Each time you conduct this coin toss experiment you will get different relative frequencies for each of the outcomes.

Concept Check 2.1

(a) A group of Y10 students were surveyed to find out their shoe sizes. The table below shows the results:

Shoe Size	5	6	7	8	9	10	11	12
No. of Students	3	7	9	15	19	10	4	3

A person is chosen at random from the group. What is the probability that the person has a shoe size:

- (i) 6? [9]
- (ii) Less than 7? [10]
- (iii) 9 or greater? [11]
- (b) The table shows the voting preferences in a particular electorate in a State election.

Party	Percentage
Liberal	55%
Labor	40%
Independent	5%

A newspaper reporter chooses a voter from this electorate at random from the electoral roll. What is the probability that the voter is:

- (i) Not a Liberal voter? [12]
- (ii) A Liberal or Labor voter? [13]

(c) A biased coin is tossed 60 times and the following table shows the results.

Outcome	Frequency
Head	15
Tail	45

If the same coin is tossed a very large	number of times,	, what is the closest	estimate of the
chance that the 3000 th toss is a tail?	[14]		

(d) A goal kicker for a football team averages 46 goals out of every 50 goal attempts. In a particular match the goal kicker only had one attempt. What is the chance that he misses? [15]

(e) The table below illustrates the status of women in a small country town.

	Single	Married
0 to 18 years	74	1
19 years and over	27	88

- (i) How many women are there in the country town? $^{\mbox{\scriptsize [16]}}$
- (ii) If one of the women were selected at random, find the probability that she is:
 - (α) Married [17]
- (β) Married and under 19 years of age [18]
 - (γ) Single and over 19 years of age [19]

124 Our students come first