Year 09 Maths

Lesson 7 Equations 4

1. Inequalities

□ Understanding inequalities

■ An inequality is an algebraic statement containing one or more inequality symbols:

a > b	a is greater than b
$a \ge b$	$oldsymbol{a}$ is greater than or equal to $oldsymbol{b}$
a < b	a is less than b
$a \leq b$	$oldsymbol{a}$ is less than or equal to $oldsymbol{b}$

Discussion

Are $p \ge q$ and $q \le p$ equivalent statements? [1]

- Inequalities are sometimes called inequations because they simply replace the = symbol with an inequality symbol.
- Inequalities are solved in the same way as equations (using inverse operations) except there will be many solutions. For example:

<u>Equation</u>	<u>Inequality</u>
x + 5 = 7	x + 5 > 7
- 5 - 5	-5 - 5
x = 2	x > 2

- The equation x + 5 = 7 has only one solution, x = 2. This is the only value of x that satisfies the equation (makes the equation true).
- However, when we the **inequality** the same way, we get x > 2, a statement that says that any value of x greater than 2 is a solution. There are many numbers greater than 2, thus there are **many solutions**!

A solution to an inequality can be verified by substituting the value of the pronumeral into the inequality. If it holds true, then we say the solution satisfies the inequality.

Example:

Test whether x = -4 and x = 18 satisfy the inequality x - 5 > 7.

Solution:

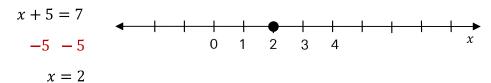
Test
$$x = -4$$
: LHS = $x - 5$
= $-4 - 5$
= -9

 \Rightarrow 7, therefore x = -4 does NOT satisfy the inequality.

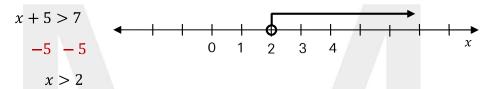
Test
$$x = 18$$
: LHS $= x - 5$
 $= 18 - 5$
 $= 13$
> 7, therefore $x = 18$ DOES satisfy the inequality.

Concept Check 1.1

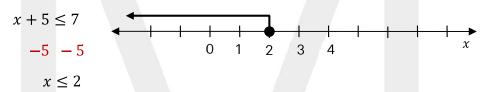
Check whether the given values satisfy the inequalities.


(a) $5x + 2 \le 7$ Test x = 3, -2, 1

$\text{(b) } \frac{b+4}{-2} \le 2b$	Test $b = 2, -3, -6$	[3]


Graphing inequalities on the number line

■ The **solutions** of equations and inequalities can be **represented visually** on a number line. Consider the following examples:

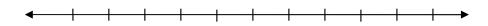

Equation

Inequality

Inequality

■ SUMMARY:

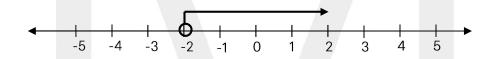
- Arrows are drawn to the right to represent "greater than" and to the left to represent "less than".
- An open circle is used to represent strict inequalities > or <. A closed circle is used to represent ≥ or ≤.

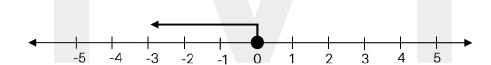

Concept Check 1.2

Show each of the following inequalities on the given number lines.

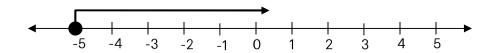
(a) $a \le -8$

(b) x > 5


(c) $p < \frac{11}{3}$


Concept Check 1.3

Write the inequality represented by each of the following graphs.


(a) [4]

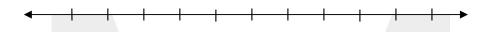
(b) [5]

(c) [6]

Solving linear inequalities

Inverse operations can be applied to inequalities in the same way they are applied to equations.

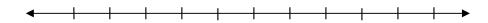
Discussion


Consider the inequality 6 > 4. This is a true statement.

- Add 10 to both sides of the inequality. Is the new statement true?
- Subtract 11 from both sides of the inequality. Is the new statement true?
- Multiply both sides of the inequality by 8. Is the new statement true?
- Divide both sides of the inequality by 2. Is the new statement true?
- Multiply both sides of the inequality by -12. Is the new statement true?
- Divide both sides of the inequality by -2. Is the new statement true?
- What operations caused your inequality statement to become false? [7]
- What should happen to the inequality sign to keep the statement true? [8]
- When multiplying or dividing both sides of an inequality by a negative number, you must reverse the inequality sign.
 - The reverse of < or \le is > or \ge .
 - The reverse of > or \ge is < or \le .

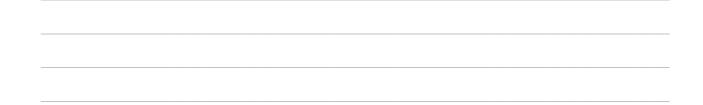
Solve the following inequalities and graph the solutions on the given number line.

(a)
$$5x + 2 \ge 8$$
 [9]



(b)
$$\frac{6x}{5} - 1 > -7$$
 [10]


(c)
$$2a + 7 < -\frac{13}{3}$$
 [11]




(e)
$$24 - 5q \le 18 - 9q^{[13]}$$

Solve the following inequalities and graph the solutions on the number line.

(a)
$$2(x-1)-4>12$$
 [14]

(b)
$$22x \ge 8(2x+3) + 2^{[15]}$$

