YEAR 11
MATHS EXT 1
ACCELERATION

LESSON 4: PARAMETRIC REPRESENTATION 1
(Preliminary Mathematics Ext 1 Topic)
Notice to Students

- Attempt ALL questions.
- If you are having difficulty with your Work Booklet, please seek assistance through WORKSHOPS.
- Your teacher will check that you have completed this work booklet in the assigned time.
- Allocated time for this Work Booklet is 90 minutes.
Question 1

Find the Cartesian equations for the following curves with parametric equations:

(a) \(x = 8t - 5; \ y = t^2 + 2t - 3 \) \([1]\)

(b) \(x = 2 \sec \theta; \ y = 3 \tan \theta \) \([2]\)

(c) \(x = 2t; \ y = t^2 + 2 \) \([3]\)

(d) \(x = \sin \theta; \ y = \cos^2 \theta - \sin^2 \theta \) \([4]\)
Question 2

(a) (i) Show that \((6t - 5, 3t^2 - 6)\) lies on the parabola \((x + 5)^2 = 12(y + 6)\)

(ii) Find the coordinates of \(P\) where \(t = -2\) \([5]\)

(b) A parabola has parametric equations \(x = 4t\) and \(y = 2t^2\). Find the:
 (i) coordinates of its focus \([6]\)
 (ii) equation of its directrix \([7]\)

(c) (i) Find the coordinates of the point \(P\) on the parabola \(x = t^2, y = -2t\) where \(t = 2\). \([8]\)
 (ii) Find the equation of the line \(PS\) where \(S\) is the focus of the parabola. \([9]\)
Question 3

\(P(2ap, ap^2) \) and \(Q(2aq, aq^2) \) are two points on the parabola \(x^2 = 4ay \). Find the:

(a) equation of the chord \(PQ \) \[10\]

(b) coordinates of the point of intersection of the chord \(PQ \) and the directrix of the parabola \[11\]

(c) coordinates of \(Q \) in terms of \(p \) if \(PQ \) is a focal chord. \[12\]
Question 4

\(P(8p, 4p^2)\) and \(Q(8q, 4q^2)\) are two points on the parabola \(x^2 = 16y\).

(i) Find the equation of the chord \(PQ\). \([13]\]

(ii) Find the coordinates of the point where the chord meets the directrix. \([14]\]

(iii) Find the relationship between \(p\) and \(q\) if \(PQ\) is a focal chord. \([15]\]
Question 5

\((2ap, ap^2) \) is a point on the parabola \(x^2 = 4ay \). The tangent at \(P \) meets the directrix of the parabola at \(T \). \(S \) is the focus of the parabola.

(i) Find the equation of the tangent at the point \(P \). [16]

(ii) Find the coordinates of \(T \). [17]

(iii) Show that \(ST \) is perpendicular to \(SP \).
Question 6

$p(2ap, ap^2)$ is a point on the parabola $x^2 = 4ay$.

(i) Find the equation of the tangent to the parabola at the point P. [18]

(ii) The tangent at P meets the x-axis at T and the y-axis at U. Find the coordinates of the points T and U. [19]

(iii) S is the focus of the parabola. Show that ST is perpendicular to PT.

(iv) Show that T bisects PU.
Question 7

\[x^2 = 4ay \]

\(\text{P(2ap, ap^2)} \) and \(\text{Q(2aq, aq^2)} \) are two points on the parabola \(x^2 = 4ay \). \(T \) is the point of intersection of the tangents drawn at \(P \) and \(Q \). \(N \) is the point of intersection of the normals drawn at \(P \) and \(Q \).

(i) Find the equation of the tangent and normal at \(P \). [20]

(ii) Hence find the coordinates of \(T \) and \(N \). [21]
(iii) Show that \(TN\) is parallel to the axis of the parabola if \(PQ\) is a focal chord.

(iv) If \(pq = 2\), show that \(N\) lies on the parabola.
Question 8

Two points $P(2Ap, Ap^2)$ and $Q(2Aq, Aq^2)$ lie on the parabola $x^2 = 4Ay$, where $A > 0$. The chord PQ passes through the focus.

(a) Show that $pq = -1$

(b) Show that the point of intersection T of the tangents to the parabola at P and Q lies on the line $y = -A$

(c) Show that the chord PQ has length $A(p + \frac{1}{p})^2$
Question 9

In the diagram given below, $Q(4q, 2q^2)$ is a point on the parabola $x^2 = 8y$. BQ is drawn parallel to the y-axis and CT is a tangent to the parabola at Q. S is the focus of the parabola and T is the y-intercept of the tangent at Q.

(a) Find the equation of the tangent at Q. [22]

(b) Show that T has coordinates $(0, -2q^2)$.

(c) Show that $SQ = ST$

(d) Hence or otherwise prove that $\angle CQB = \angle SQT$.