YEAR 11
MATHS ADV

LESSON 6: TRIGONOMETRIC RATIOS 1
1. REVIEW OF TRIGONOMETRIC RATIOS

- Trigonometric Ratios
 - In any right angled triangle:

\[
\sin \theta = \frac{\text{opposite side}}{\text{hypotenuse}}
\]

\[
\cos \theta = \frac{\text{adjacent side}}{\text{hypotenuse}}
\]

\[
\tan \theta = \frac{\text{opposite side}}{\text{adjacent side}}
\]

Did You Know:

An easy way to remember these results is “SOH CAH TOA”

- **SOH**: \(\sin \theta \) = opposite/hypotenuse
- **CAH**: \(\cos \theta \) = adjacent/hypotenuse
- **TOA**: \(\tan \theta \) = opposite/adjacent
cosec $\theta = \frac{1}{\sin \theta} = \frac{\text{hypotenuse}}{\text{opposite side}}$

$\sec \theta = \frac{1}{\cos \theta} = \frac{\text{hypotenuse}}{\text{adjacent side}}$

$\cot \theta = \frac{1}{\tan \theta} = \frac{\text{adjacent side}}{\text{opposite side}}$

Did You Know:
The formula for cosec θ, sec θ and cot θ are easily remembered by using the third letter:
- $\text{coSec} \theta = \frac{1}{\sin \theta}$
- $\text{seC} \theta = \frac{1}{\cos \theta}$
- $\text{coT} \theta = \frac{1}{\tan \theta}$
Concept Check 1.1

(a) In the diagram shown:

(i) Determine the missing side using Pythagoras’ Theorem. [1]

(ii) Write down the values of:

\[\sin \theta = \] [2]

\[\cos \theta = \] [3]

\[\tan \theta = \] [4]

(b) Find the value of the \(x \) in the following diagrams giving your answers for lengths correct to 1 decimal place and for angles to the nearest minute. All measurements are in cm. [5]
a)

\[\angle \text{33°9'} \]

12.4

\[x \]

b)

\[\angle \text{19.4} \]

12.6

\[x \]
Exact Values

Using the triangles below, complete the table.

<table>
<thead>
<tr>
<th></th>
<th>$\theta = 30^\circ$</th>
<th>$\theta = 45^\circ$</th>
<th>$\theta = 60^\circ$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sin \theta$</td>
<td>[8]</td>
<td>[9]</td>
<td>[10]</td>
</tr>
<tr>
<td>$\cos \theta$</td>
<td>[11]</td>
<td>[12]</td>
<td>[13]</td>
</tr>
<tr>
<td>$\tan \theta$</td>
<td>[14]</td>
<td>[15]</td>
<td>[16]</td>
</tr>
</tbody>
</table>

Note to Students:
Trigonometric ratios of 30°, 45° and 60° should always be presented in exact form.
2. **ANGLES OF ANY MAGNITUDE**

Note to Students:
There are many different approaches to the evaluation of the trigonometric ratios of angles larger than 90°. Make sure that you can quickly and efficiently deal with these problems.

- **Trigonometric Ratios in the First Quadrant**
 - The trigonometric functions sine and cosine are defined in terms of the coordinates of points lying on the unit circle $x^2 + y^2 = 1$.
Consider the diagram which shows a right-angled triangle AOP within a unit circle.

Using the triangle AOP, show that $x = \cos \theta$ and $y = \sin \theta$.

Is $\cos \theta$ (x-coordinate of P) in the first quadrant positive or negative? [17]

Is $\sin \theta$ (y-coordinate of P) in the first quadrant positive or negative? [18]

Is $\tan \theta$ in the first quadrant positive or negative? [19]

Hence, all the trigonometric ratios are positive in the first quadrant.
Concept Check 2.1

Without using a calculator, find the exact value of the following:

(a) \(\sin 60^\circ \cos 45^\circ + \cos 45^\circ \sin 60^\circ \) \[20\]

(b) \(\frac{\tan 45^\circ - \tan 30^\circ}{1 + \tan 45^\circ \tan 30^\circ} \) \[21\]

(c) \(\sec^2 60^\circ - \tan^2 60^\circ \) \[22\]

(d) \(\frac{\sin^2 30^\circ + \cos^2 30^\circ}{2 \sin 60^\circ \cos 60^\circ} \) \[23\]

(e) \(4 \sin^3 60^\circ - \sin 60^\circ \) \[24\]
Concept Check 2.2

Without using a calculator, show the following are true.

(a) \[\frac{\tan 30^\circ}{\sin 30^\circ} = \sec 30^\circ \]

(b) \[\cos^2 30^\circ + \sin^2 30^\circ = 1 \]

(c) \[1 + \cot^2 60^\circ = \csc^2 60^\circ \]

(d) \[\frac{1 - \tan^2 30^\circ}{2 \tan 30^\circ} = \cot 60^\circ \]
Trigonometric Ratios in the Second Quadrant

- Consider the right angle triangle in the second quadrant.

![Diagram of a right angle triangle in the second quadrant with coordinates Q(-x, y) and P(x, y).]

Is \(\cos \theta \) (x-coordinate of Q) in the second quadrant positive or negative?\(^{[25]}\)

Is \(\sin \theta \) (y-coordinate of Q) in the second quadrant positive or negative?\(^{[26]}\)

Is \(\tan \theta \) in the second quadrant positive or negative?\(^{[27]}\)

Hence the positive trigonometric ratio in the second quadrant is \(\sin \theta \)

- From the diagram, we can see that the coordinates of Q and P are related by symmetry:
 - The coordinates of P: \((x, y) = (\cos \theta, \sin \theta) \)
 - The coordinates of Q: \((-x, y) = [\cos(180 - \theta), \sin(180 - \theta)] \)

 Hence, using the triangle in the second quadrant:

 \[
 \sin(180 - \theta) = y = \sin \theta \\
 \cos(180 - \theta) = -x = -\cos \theta \\
 \tan(180 - \theta) = \frac{y}{-x} = -\frac{\sin \theta}{\cos \theta} = -\tan \theta
 \]
Trigonometric Ratios in the Third Quadrant

- Consider the right angle triangle in the third quadrant.

Is \(\cos \theta \) (x-coordinate of Q) in the third quadrant positive or negative? \(^{28}\)

Is \(\sin \theta \) (y-coordinate of Q) in the third quadrant positive or negative? \(^{29}\)

Is \(\tan \theta \) in the third quadrant positive or negative? \(^{30}\)

Hence the positive trigonometric ratio in the third quadrant is \(\tan \theta \)

- From the diagram, we can see that the coordinates of Q and P are related by symmetry:

The coordinates of P: \((x, y) = (\cos \theta, \sin \theta)\)

The coordinates of Q: \((-x, -y) = [\cos(180 + \theta), \sin(180 + \theta)]\)

Hence, using the triangle in the third quadrant:

\[
\sin(180 + \theta) = -y = -\sin \theta \\
\cos(180 + \theta) = -x = -\cos \theta \\
\tan(180 + \theta) = \frac{-y}{-x} = \frac{\sin \theta}{\cos \theta} = \tan \theta
\]
Trigonometric Ratios in the Fourth Quadrant

Consider the right angle triangle in the **fourth quadrant**

![Diagram of a right angle triangle in the fourth quadrant]

Is \(\cos \theta \) (x-coordinate of Q) in the fourth quadrant positive or negative?

\[\text{Is } \cos \theta \text{ (x-coordinate of Q) in the fourth quadrant positive or negative?} \]

\[\text{Is } \sin \theta \text{ (y-coordinate of Q) in the fourth quadrant positive or negative?} \]

\[\text{Is } \tan \theta \text{ in the fourth quadrant positive or negative?}\]

Hence the positive trigonometric ratio in the fourth quadrant is \(\cos \theta \)

From the diagram, we can see that the coordinates of Q and P are related by symmetry:

The coordinates of P: \((x, y) = (\cos \theta, \sin \theta)\)

The coordinates of Q: \((x, -y) = [\cos(360 - \theta), \sin(360 - \theta)]\)

Hence, using the triangle in the fourth quadrant:

\[
\sin(180 + \theta) = -y = -\sin \theta \\
\cos(180 + \theta) = x = \cos \theta \\
\tan(180 + \theta) = \frac{-y}{x} = -\frac{\sin \theta}{\cos \theta} = -\tan \theta
\]
Negative Angles

Consider the right angle triangle in the **fourth quadrant**

A negative angle lies in the fourth quadrant.

Hence the positive trigonometric ratio for negative angles is $\cos \theta$

From the diagram, we can see that the coordinates of Q and P are related by symmetry:

The coordinates of P: $(x, y) = (\cos \theta, \sin \theta)$

The coordinates of Q: $(x, -y) = [\cos(-\theta), \sin(-\theta)]$

Hence, using the triangle in the fourth quadrant:

\[
\sin(-\theta) = -y = -\sin \theta
\]

\[
\cos(-\theta) = x = \cos \theta
\]

\[
\tan(-\theta) = \frac{-y}{x} = -\frac{\sin \theta}{\cos \theta} = -\tan \theta
\]
Angles Greater than 360°

Recall that adding (or subtracting) 360° is equivalent to a full revolution around the unit circle. Thus, you will return to the same quadrant in the same position.
Positive Ratios

- The positive ratios can be summarized as:

- You can use the following phrases to help you remember the positive ratios:
 - All Stations To Central
 - All Surfers To Coogee
 - Add Sugar To Coffee
Formulas for General Angles

- Given that θ is an acute angle, then the following are equivalent ratios:

$$\sin(180^\circ - \theta) = \sin \theta$$
$$\cos(180^\circ - \theta) = -\cos \theta$$
$$\tan(180^\circ - \theta) = -\tan \theta$$

$$\sin(180^\circ + \theta) = -\sin \theta$$
$$\cos(180^\circ + \theta) = -\cos \theta$$
$$\tan(180^\circ + \theta) = \tan \theta$$

$$\sin(360^\circ - \theta) = -\sin \theta$$
$$\cos(360^\circ - \theta) = \cos \theta$$
$$\tan(360^\circ - \theta) = -\tan \theta$$

$$\sin(-\theta) = -\sin \theta$$
$$\cos(-\theta) = \cos \theta$$
$$\tan(-\theta) = -\tan \theta$$
Concept Check 2.3

Find the exact values of the following.

Did You Know:
When faced with the trigonometric ratios of a large angle we have a two stage attack:
1. Make the big angle acute by moving to the related angle \angle, which is just the angle up or down off the horizontal (in the unit circle).
2. Use the ASTC diagram to determine the sign.
If the related angle is $\angle = 30^\circ$, 45° or 60°, present your answer in exact form.

(i) $\sin 210^\circ$ [34]

- **Step 1:** Identify the quadrant that the angle lies in.

- **Step 2:** Find the acute angle, θ.
 - 2^{nd} quadrant $\rightarrow (180 - \theta)$
 - 3^{rd} quadrant $\rightarrow (180 + \theta)$
 - 4^{th} quadrant $\rightarrow (360 - \theta)$

- **Step 3:** Determine whether your trigonometric ratio is positive or negative in your quadrant (hint: use ASTC). Then, write down the relevant trigonometric ratio in terms of your acute angle.

- **Step 4:** Find the exact value of your trigonometric ratio.
(ii) \(\tan(-315°) \) \[35\]

Note to Students:
We make very big angles small by subtracting 360° (one complete revolution) and negative angles positive by adding 360°.

- **Step 1:** Identify the quadrant that the angle lies in.

- **Step 2:** Find the acute angle. (Hint: add 360°)

- **Step 3:** Determine whether your trigonometric ratio is positive or negative in your quadrant (hint: use ASTC). Then, write down the relevant trigonometric ratio in terms of your acute angle.

- **Step 4:** Find the exact value of your trigonometric ratio.

(iii) \(\csc 240° \) \[36\]

Note to Students:
Never think about \(\csc, \sec \) or \(\cot \). Always move immediately to \(\sin, \cos \) or \(\tan \).
(iv) \(\cos 135^\circ\) [37]

(v) \(\sec 420^\circ\) [38]

(vi) \(\cot(-510^\circ)\) [39]

Note to Students:
Add 360°… twice!

(vii) \(\sin 585^\circ\) [40]
Concept Check 2.4

Express the following ratios as the ratio of an acute angle.

(a) \(\cos 154^\circ \)

- Identify the quadrant that the angle lies in.

- Step 2: Find the acute angle, \(\theta \).

 2\(^{\text{nd}}\) quadrant \(\rightarrow (180 - \theta) \)
 3\(^{\text{rd}}\) quadrant \(\rightarrow (180 + \theta) \)
 4\(^{\text{th}}\) quadrant \(\rightarrow (360 - \theta) \)

- Step 3: Determine whether your trigonometric ratio is positive or negative in your quadrant (hint: use ASTC). Then, write down the relevant trigonometric ratio in terms of your acute angle.

(b) \(\csc 276^\circ 19' \) (Hint: \(\csc x = \frac{1}{\sin x} \))

(c) \(\tan 275^\circ \)
(d) \(\sec 328^0 \) \[44\]

(e) \(\sin 205^\circ 8' \) \[45\]

(f) \(\cos 290^\circ 42' \) \[46\]

(g) \(\sec 256^\circ 54' \) \[47\]
Concept Check 2.5

Express each of the following in terms of θ only and simplify where possible.

(i) \[
\frac{\sin (180^\circ - \theta)}{\sin (360^\circ + \theta)} \quad [48]
\]

Note to Students:
Adding or subtracting 360° never has an impact.

(ii) \[
\frac{\cot (-\theta)}{\tan (180^\circ + \theta)} \quad [49]
\]

(iii) \[
\cos (360^\circ - \theta) - \cos (180^\circ - \theta) \quad [50]
\]
Complementary Angles

Given that θ is an acute angle, then the following are equivalent ratios:

\[
\sin(90 - \theta) = \cos \theta \quad \cos(90 - \theta) = \sin \theta \quad \tan(90 - \theta) = \cot \theta
\]
\[
\cot(90 - \theta) = \tan \theta \quad \sec(90 - \theta) = \csc \theta \quad \csc(90 - \theta) = \sec \theta
\]

Note to Students:
Treat “co” as if it stands for “complement of”. The third letter then indicates the trigonometric ratio that is complementary.

- $\cos \theta \rightarrow$ complement of $\cos \theta$ is $\sin \theta$
- $\cot \theta \rightarrow$ complement of $\cot \theta$ is $\tan \theta$
- $\csc \theta \rightarrow$ complement of $\csc \theta$ is $\sec \theta$

Concept Check 2.6

Fill in the missing spaces.

(i) $\cos 30^\circ = \sin \ldots\ldots\ldots\ldots\ldots\ldots\ldots[51]$
(ii) $\sin 25^\circ = \cos \ldots\ldots\ldots\ldots\ldots\ldots\ldots[52]$
(iii) $\sec 60^\circ = \cos ec.\ldots\ldots\ldots\ldots\ldots\ldots\ldots[53]$
(iv) $\cos ec45^\circ = \sec \ldots\ldots\ldots\ldots\ldots\ldots\ldots[54]$
(v) $\tan 10^\circ = \cot \ldots\ldots\ldots\ldots\ldots\ldots\ldots[55]$
(vi) $\cot 73^\circ = \tan \ldots\ldots\ldots\ldots\ldots\ldots\ldots[56]$
Concept Check 2.7

Simplify the following without using a calculator:

(a) \(\frac{\sin 20^\circ}{\cos 70^\circ} \) [57] (Hint: make the top and the bottom into the same trigonometric ratio)

(b) \(\sin 15^\circ + \cos 75^\circ \) [58]

(c) \(\frac{\tan 70^\circ}{\cot 20^\circ} \) [59]
Concept Check 2.8

If \(\tan x = \frac{1}{3} \) and \(x \) is acute, write down the exact values of:

(i) \(\tan(90^\circ - x) \) \([60]\)

(ii) \(\cos(90^\circ + x) \) \([61]\)

Step 1: Identify the quadrant that the angle lies in.

Step 2: Find the acute angle.
- 2nd quadrant \(\rightarrow (180 - \theta) \)
- 3rd quadrant \(\rightarrow (180 + \theta) \)
- 4th quadrant \(\rightarrow (360 - \theta) \)

\[90^\circ + x = 180^\circ - \theta \]

Step 3: Write down the relevant trigonometric ratio in terms of your acute angle.

Step 4: Determine the exact value of your trigonometric ratio using a right angle triangle and \(\tan x = \frac{1}{3} \).
(iii) \(\sin(270^\circ + x) \) \(^{[62]}\)

Step 1: Identify the quadrant that the angle lies in.

Step 2: Find the acute angle.
- 2nd quadrant \(\rightarrow (180 - \theta) \)
- 3rd quadrant \(\rightarrow (180 + \theta) \)
- 4th quadrant \(\rightarrow (360 - \theta) \)

\[270^\circ + x = 360^\circ - \theta \]

Step 3: Write down the relevant trigonometric ratio in terms of your acute angle, \(\theta \).

Step 4: Determine the exact value of your trigonometric ratio using a right angle triangle and \(\tan x = \frac{1}{3} \).

(iv) \(\cos(270^\circ - x) \) \(^{[63]}\)
Discussion Question:

When dealing with angles off the vertical axis $90° \pm \theta, 270° \pm \theta$ we have the following short cut.
1. Use the ASTC diagram to determine the sign of the ratio.
2. Move to the complementary ratio by adding or removing “co”.

Examples:
1. $\tan(90° - x)$
 The angle $90° - x$ is in Quadrant 1 where \tan is positive.
 Therefore $\tan(90° - x) = \cot x$.
2. $\cos(90° + \theta)$
 The angle $90° + \theta$ is in Quadrant 2 where \cos is negative.
 Therefore $\cos(90° + \theta) = -\sin \theta$.
3. $\sin(270° + x)$
 The angle $270° + x$ is in Quadrant 4 where \sin is negative.
 Therefore $\sin(270° + x) = -\cos x$.
4. $\tan(270° - x)$
 The angle $270° - x$ is in Quadrant 3 where \tan is positive.
 Therefore $\tan(270° - x) = \cot x$.
Concept Check 2.9

Find the value of x for the following equations:

(i) \(\sin x = \cos 50^\circ \) \[64\]

(ii) \(\cos ecx = \sec 26^\circ \) \[65\]

(iii) \(\tan(x - 20) = \cot 55^\circ \) \[66\]

(iv) \(\cos(3x - 8) = \sin 83^\circ \) \[67\]

(v) \(\cot(2x + 7) = \tan 73^\circ \) \[68\]

(vi) \(\sec(5 - 4x) = \cos ecx 51^\circ \) \[69\]
Given One Ratio, Find the Others

Example

(i) Given \(\tan \theta = \frac{3}{4} \) and \(\sin \theta < 0 \), find the exact values of \(\cos \theta \) and \(\sin \theta \). \(^{[70]}\)

Step 1: Identify the quadrant where \(\theta \) lies.

Step 2: Complete the triangle(s) and use Pythagoras' Theorem to find the missing side

Step 3: Find the other ratios using the triangle(s).

Note to Students:
Let the triangles take care of the ratios and the ASTC diagram take care of the sign.
(ii) Given \(\tan \alpha = \frac{1}{\sqrt{7}} \) and \(180^\circ < \alpha < 270^\circ \) and \(\tan \beta = 1 \) and \(0^\circ < \beta < 90^\circ \), find the exact value of \(\sin \alpha + \cos \beta \). \[71\]

Step 1: Identify the quadrant where \(\alpha \) and \(\beta \) lie

Step 2: Complete the triangle(s) and use Pythagoras' Theorem to find the missing sides.

Step 3: Find the other ratios using the triangle(s) and answer the question.
Concept Check 2.10

(i) Given \(\cos e c \theta = \frac{8}{7} \) find the exact values of \(\tan \theta \) and \(\cos \theta \) for \(0^\circ < \theta < 360^\circ \). [72]

(ii) Given \(\tan \theta = -\frac{3}{4} \) and \(\cos \theta > 0 \), find the exact values of \(\cos \theta \) and cosec \(\theta \). [73]
3. **LESSON REVIEW**

1. Find the value of the x in the following diagrams giving your answers for lengths correct to 1 decimal place and for angles to the nearest minute. All measurements are in cm.

 a)

 b)

2. Use the right-angled triangle given below to evaluate the following:

 a) $\csc \theta = $
 b) $\cot \theta = $
 c) $\sec \theta = $
 d) $\sin \theta = $
 e) $\cos \theta = $
3. Without using a calculator, find the exact value of the following:

(a) \(\frac{\sin 30^\circ}{\cos 60^\circ}\) [74]

(b) \(1 - 2 \sin^2 45^\circ\) [75]

(c) \(\cos e^2 45^\circ - \cot^2 45^\circ\) [76]

(d) \(\frac{1 - \tan^2 30^\circ}{2 \tan 30^\circ}\) [77]

(e) \(\frac{1 - \sin 45^\circ}{1 + \sin 45^\circ}\) [78]

(f) \(\sin 45^\circ \tan 30^\circ\) [79]
4. Without using a calculator, show the following are true.

(a) \[
\frac{\tan 30^\circ}{1 - \tan^2 30^\circ} = \frac{\tan 60^\circ}{2}
\]

(b) \[2 \sin 45^\circ \cos 45^\circ = \sin 90^\circ\]

(c) \[1 - 2 \cos^2 30^\circ = \cos 60^\circ\]

(d) \[
\frac{\tan 60^\circ - \tan 30^\circ}{1 + \tan 60^\circ \tan 30^\circ} = \tan 30^\circ
\]
5. Express the following ratios as the ratio of an acute angle.

(a) \(\sin 171\degree \) \([80]\)

(b) \(\cot 196\degree \) \([81]\)

(c) \(\sin 215\degree 8' \) \([82]\)

(d) \(\cot 112\degree 36' \) \([83]\)

(e) \(\sec 286\degree 32' \) \([84]\)

(f) \(\tan 298\degree 26' \) \([85]\)

(g) \(\csc(−387\degree 34') \) \([86]\)